Given an array nums
of n integers where n > 1, return an array output
such that output[i]
is equal to the product of all the elements of nums
except nums[i]
.
Example:
Input:[1,2,3,4]
Output:[24,12,8,6]
Note: Please solve it without division and in O(n).
Follow up:
Could you solve it with constant space complexity? (The output array does not count as extra space for the purpose of space complexity analysis.)
class Solution { //O(n) public int[] productExceptSelf(int[] nums) { int[] res = new int[nums.length]; int[] left = new int[nums.length]; int[] right = new int[nums.length]; left[0] = 1; right[nums.length-1] = 1; for(int i = 1; i < nums.length; i++){ left[i] = left[i-1] * nums[i-1]; } for(int i = nums.length-2; i >= 0; i--){ right[i] = right[i+1] * nums[i+1]; } for(int i = 0; i < nums.length; i++){ res[i] = left[i] * right[i]; } return res; } }
我们以一个4个元素的数组为例,nums=[a1,a2,a3,a4]
,要想在O(n)
的时间内输出结果,比较好的解决方法是提前构造好两个数组:
[1, a1, a1*a2, a1*a2*a3]
[a2*a3*a4, a3*a4, a4, 1]
然后两个数组一一对应相乘,即可得到最终结果 [a2*a3*a4, a1*a3*a4, a1*a2*a4, a1*a2*a3]
。
不过,上述方法的空间复杂度为O(n)
,可以进一步优化成常数空间,即用一个整数代替第二个数组。'
public class Solution {//O(1) public int[] productExceptSelf(int[] nums) { final int[] left = new int[nums.length]; left[0] = 1; for (int i = 1; i < nums.length; ++i) { left[i] = nums[i - 1] * left[i - 1]; } int right = 1; for (int i = nums.length - 1; i >= 0; --i) { left[i] *= right; right *= nums[i]; } return left; } }