• pandas-18 reindex用法


    pandas-18 reindex用法

    pandas中的reindex方法可以为series和dataframe添加或者删除索引。
    方法:serise.reindex()、dataframe.reindex()
    如果新添加的索引没有对应的值,则默认为nan。如果减少索引,就相当于一个切片操作。

    import numpy as np
    import pandas as pd
    from pandas import Series, DataFrame
    
    np.random.seed(666)
    
    # series reindex
    s1 = Series([1, 2, 3, 4], index=['A', 'B', 'C', 'D'])
    print(s1)
    '''
    A    1
    B    2
    C    3
    D    4
    dtype: int64
    '''
    
    
    # 重新指定 index, 多出来的index,可以使用fill_value 填充
    print(s1.reindex(index=['A', 'B', 'C', 'D', 'E'], fill_value = 10))
    '''
    A     1
    B     2
    C     3
    D     4
    E    10
    dtype: int64
    '''
    
    s2 = Series(['A', 'B', 'C'], index = [1, 5, 10])
    print(s2)
    '''
    1     A
    5     B
    10    C
    dtype: object
    '''
    
    # 修改索引,
    # 将s2的索引增加到15个
    # 如果新增加的索引值不存在,默认为 Nan
    print(s2.reindex(index=range(15)))
    '''
    0     NaN
    1       A
    2     NaN
    3     NaN
    4     NaN
    5       B
    6     NaN
    7     NaN
    8     NaN
    9     NaN
    10      C
    11    NaN
    12    NaN
    13    NaN
    14    NaN
    dtype: object
    '''
    
    # ffill : foreaward fill 向前填充,
    # 如果新增加索引的值不存在,那么按照前一个非nan的值填充进去
    print(s2.reindex(index=range(15), method='ffill'))
    '''
    0     NaN
    1       A
    2       A
    3       A
    4       A
    5       B
    6       B
    7       B
    8       B
    9       B
    10      C
    11      C
    12      C
    13      C
    14      C
    dtype: object
    '''
    
    # reindex dataframe
    df1 = DataFrame(np.random.rand(25).reshape([5, 5]), index=['A', 'B', 'D', 'E', 'F'], columns=['c1', 'c2', 'c3', 'c4', 'c5'])
    print(df1)
    '''
             c1        c2        c3        c4        c5
    A  0.700437  0.844187  0.676514  0.727858  0.951458
    B  0.012703  0.413588  0.048813  0.099929  0.508066
    D  0.200248  0.744154  0.192892  0.700845  0.293228
    E  0.774479  0.005109  0.112858  0.110954  0.247668
    F  0.023236  0.727321  0.340035  0.197503  0.909180
    '''
    
    # 为 dataframe 添加一个新的索引
    # 可以看到 自动 扩充为 nan
    print(df1.reindex(index=['A', 'B', 'C', 'D', 'E', 'F']))
    ''' 自动填充为 nan
             c1        c2        c3        c4        c5
    A  0.700437  0.844187  0.676514  0.727858  0.951458
    B  0.012703  0.413588  0.048813  0.099929  0.508066
    C       NaN       NaN       NaN       NaN       NaN
    D  0.200248  0.744154  0.192892  0.700845  0.293228
    E  0.774479  0.005109  0.112858  0.110954  0.247668
    F  0.023236  0.727321  0.340035  0.197503  0.909180
    '''
    
    # 扩充列, 也是一样的
    print(df1.reindex(columns=['c1', 'c2', 'c3', 'c4', 'c5', 'c6']))
    '''
             c1        c2        c3        c4        c5  c6
    A  0.700437  0.844187  0.676514  0.727858  0.951458 NaN
    B  0.012703  0.413588  0.048813  0.099929  0.508066 NaN
    D  0.200248  0.744154  0.192892  0.700845  0.293228 NaN
    E  0.774479  0.005109  0.112858  0.110954  0.247668 NaN
    F  0.023236  0.727321  0.340035  0.197503  0.909180 NaN
    '''
    
    # 减小 index
    print(s1.reindex(['A', 'B']))
    ''' 相当于一个切割效果
    A    1
    B    2
    dtype: int64
    '''
    
    print(df1.reindex(index=['A', 'B']))
    ''' 同样是一个切片的效果
             c1        c2        c3        c4        c5
    A  0.601977  0.619927  0.251234  0.305101  0.491200
    B  0.244261  0.734863  0.569936  0.889996  0.017936
    '''
    
    # 对于一个 serie 来说,可以使用 drop,来丢掉某些 index
    print(s1.drop('A'))
    ''' 就只剩下 三个了
    B    2
    C    3
    D    4
    dtype: int64
    '''
    
    # dataframe drop(A) 直接去掉一行
    print(df1.drop('A', axis=0))
    ''' axis 默认 是 行
             c1        c2        c3        c4        c5
    B  0.571883  0.254364  0.530883  0.295224  0.352663
    D  0.858452  0.379495  0.593284  0.786078  0.949718
    E  0.556276  0.643187  0.808664  0.289422  0.501041
    F  0.737993  0.286072  0.332714  0.873371  0.421615
    '''
    
    print(df1.drop('c1', axis=1))
    ''' 将 c1 的列 去掉
             c2        c3        c4        c5
    A  0.326681  0.247832  0.601982  0.145905
    B  0.373961  0.393819  0.439284  0.926706
    D  0.558490  0.617851  0.461280  0.373102
    E  0.030434  0.566498  0.383103  0.739243
    F  0.982220  0.989826  0.957863  0.411514
    '''
    
  • 相关阅读:
    Echarts入门踩坑记录
    作业帮前端面经
    猿辅导前端面经
    昆仑万维前端面经
    顺丰科技前端面经
    云从科技前端面经
    亿联网络前端面经
    寒武纪前端面经
    纽约州交通事故数据可视化
    Vue中Object和Array数据变化侦测原理
  • 原文地址:https://www.cnblogs.com/wenqiangit/p/11252819.html
Copyright © 2020-2023  润新知