• tensorflow的警告


     W c:	f_jenkinshomeworkspace
    elease-windevicecpuoswindows	ensorflowcoreplatformcpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE instructions, but these are available on your machine and could speed up CPU computations. 2017-04-19 16:35:22.534756: W c:	f_jenkinshomeworkspace
    elease-windevicecpuoswindows	ensorflowcoreplatformcpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE2 instructions, but these are available on your machine and could speed up CPU computations. 2017-04-19 16:35:22.535027: W c:	f_jenkinshomeworkspace
    elease-windevicecpuoswindows	ensorflowcoreplatformcpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations. 2017-04-19 16:35:22.535245: W c:	f_jenkinshomeworkspace
    elease-windevicecpuoswindows	ensorflowcoreplatformcpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations. 2017-04-19 16:35:22.535462: W c:	f_jenkinshomeworkspace
    elease-windevicecpuoswindows	ensorflowcoreplatformcpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations. 2017-04-19 16:35:22.535680: W c:	f_jenkinshomeworkspace
    elease-windevicecpuoswindows	ensorflowcoreplatformcpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. 2017-04-19 16:35:22.536664: W c:	f_jenkinshomeworkspace
    elease-windevicecpuoswindows	ensorflowcoreplatformcpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations. 2017-04-19 16:35:22.536925: W c:	f_jenkinshomeworkspace
    elease-windevicecpuoswindows	ensorflowcoreplatformcpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations. b'Hello, TensorFlow!'
    

    解决方法一:

    import os 
    os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
    

    解决方法二:
    系统属性-环境变量
    这种方式一劳永逸,比较好

    这两种方法都是治标不治本

    解决方法三:
    安装bazel,编译tensorflow。
    这个问题的原因是CPU支持更快的运算,可是安装的Tensorflow中缺少对应的模块,需要编译安装。
    而在使用GPU的情况下,并不需要用到CPU。所以这些warning可以忽略。

  • 相关阅读:
    OpenCL、CUDA
    最小和最廉价的超级计算机,DIY的
    组装属于您自己的Tesla个人超级计算机
    多处理器系统
    开源项目Spark简介
    基于Cassandra的日志和分布式小文件存储系统【1】
    网络广告js备忘【2】
    网络广告js备忘【1】
    成功产品的意外
    Cassandra HBase和MongoDb性能比较
  • 原文地址:https://www.cnblogs.com/weiyinfu/p/6933731.html
Copyright © 2020-2023  润新知