• 北航算法作业二


    生产调度问题

    """
    2,3,2,4
    四个月份,每个月的需求量是这些,每生产一次消耗3,每生产一个消耗1,每保存一个一个月消耗0.5.
    因为最后全部消耗完,所以固定成本共11无法避免
    """
    need = [0, 2, 3, 2, 4]
    sumneed = sum(need)
    a = [[0 for i in range(sumneed + 1)] for j in range(len(need) + 1)]
    # b存储上一个结点
    b = [[0 for i in range(sumneed + 1)] for j in range(len(need) + 1)]
    """
    a[x][y]表示x月底剩下y件产品时的花费
    """
    a[0][0] = 0
    for i in range(1, len(a[0])):
       a[0][i] = 0xffffff
    for i in range(1, len(need)):
       for j in range(0, sumneed + 1):
          # 第i个月不生产
          a[i][j] = 0xffffff
          # 本月不生产,则上月剩余j+need[i]件,需要库存j件
          if j + need[i] <= sumneed:
             a[i][j] = a[i - 1][j + need[i]] + j * 0.5
             b[i][j] = (j + need[i], "本月不生产")
          # 本月生产k件,本月剩余j件,则上月剩余j+need[i]-k
          for k in range(0, j + 1 + need[i]):
             if j + need[i] - k <= sumneed:
                t = j * 0.5 + 3 + a[i - 1][j + need[i] - k]
                if a[i][j] > t:
                   a[i][j] = t
                   b[i][j] = (j + need[i] - k, "本月生产{}件".format(k))
    i, j = len(need) - 1, 0
    while i > 0:
       print(a[i][j], b[i][j])
       i, j = i - 1, b[i][j][0]
    print("算上每件的成本,共需要{}花费".format(a[len(need) - 1][0] + sumneed))

    在这个问题中,优化的空间很大.a[x][y]可以只依赖于a[x-1]层的两个数,而不用考虑中间的数.因为这里面有一个贪心:如果本月生产,那么尽量上个月剩余为0.

    汉密尔顿路

    g = [[0, 10, 20, 30, 40, 50],
         [12, 0, 18, 30, 25, 21],
         [23, 19, 0, 5, 10, 15],
         [34, 32, 4, 0, 8, 16],
         [45, 27, 11, 10, 0, 18],
         [56, 22, 16, 20, 12, 0]]
    citycnt = 6
    # 有6个城市,用000000-111111表示状态,0表示未访问该城市,1表示访问过该城市
    statecnt = 1 << citycnt
    """
    用a[state][lastCity]表示状态为state时的最后一个城市是谁
    用b[state][lastCity]记录上一个城市是谁,用于回溯找出一条路径
    """
    a = [[0xfffffff for i in range(citycnt)] for i in range(statecnt)]
    b = [[0 for i in range(citycnt)] for i in range(statecnt)]
    a[1][0] = 0  # 只需从第一个城市出发,将第一个城市置为0,其他城市置为无穷
    for i in range(2, statecnt):
       for j in range(citycnt):
          if (i & (1 << j)) == 0: continue  # 如果状态i不包含城市j,那么状态i的最后一个城市不可能是j,所以continue
          for k in range(citycnt):
             if i & (1 << k) == 0 or j == k: continue
             dis = a[i - (1 << j)][k] + g[k][j]
             if dis < a[i][j]:
                a[i][j] = dis
                b[i][j] = (i - (1 << j), k)
    now, state = 0, statecnt - 1
    for i in range(citycnt):
       if a[state][i] + g[i][0] < a[state][now] + g[now][0]:
          now = i
    print("最短距离为", a[state][now]+g[now][0])
    while state != 1:
       print("{}({})".format(now, bin(state)), end="=>")
       (state, now) = b[state][now]

     汉密尔顿回路和汉密尔顿路是等价的,中间只是多了一条回边.

    此算法复杂度为O(2^n*n^2).

  • 相关阅读:
    MacOS更改zsh命令行前缀
    python中os._exit()和sys.exit(), exit(0)和exit(1) 的用法和区别
    如何解析 redis 的 rdb 文件
    流量回放工具<二>
    策略路由配置<一>
    h3c镜像模式配置
    python上传gz文件请求
    优先队列(大顶堆实现)
    bm和kmp和bf
    dedecms 软件下载模块加入flashget快车下载代码
  • 原文地址:https://www.cnblogs.com/weiyinfu/p/6041079.html
Copyright © 2020-2023  润新知