• 58、Spark Streaming: DStream的output操作以及foreachRDD详解


    一、output操作

    1、output操作

    DStream中的所有计算,都是由output操作触发的,比如print()。如果没有任何output操作,那么,压根儿就不会执行定义的计算逻辑。
    
    此外,即使你使用了foreachRDD output操作,也必须在里面对RDD执行action操作,才能触发对每一个batch的计算逻辑。否则,光有
    foreachRDD output操作,在里面没有对RDD执行action操作,也不会触发任何逻辑。

    2、output操作概览

    image

    二、foreachRDD

    1、foreachRDD详解

    通常在foreachRDD中,都会创建一个Connection,比如JDBC Connection,然后通过Connection将数据写入外部存储。
    
    误区一:在RDD的foreach操作外部,创建Connection
    
    这种方式是错误的,因为它会导致Connection对象被序列化后传输到每个Task中。而这种Connection对象,实际上一般是不支持序列化的,也就无法被传输。
    
    dstream.foreachRDD { rdd =>
      val connection = createNewConnection() 
      rdd.foreach { record => connection.send(record)
      }
    }
    
    
    误区二:在RDD的foreach操作内部,创建Connection
    
    这种方式是可以的,但是效率低下。因为它会导致对于RDD中的每一条数据,都创建一个Connection对象。而通常来说,Connection的创建,是很消耗性能的。
    
    dstream.foreachRDD { rdd =>
      rdd.foreach { record =>
        val connection = createNewConnection()
        connection.send(record)
        connection.close()
      }
    }
    
    
    合理方式一:使用RDD的foreachPartition操作,并且在该操作内部,创建Connection对象,这样就相当于是,为RDD的每个partition创建一个Connection对象,节省资源的多了。
    
    dstream.foreachRDD { rdd =>
      rdd.foreachPartition { partitionOfRecords =>
        val connection = createNewConnection()
        partitionOfRecords.foreach(record => connection.send(record))
        connection.close()
      }
    }
    
    
    合理方式二:自己手动封装一个静态连接池,使用RDD的foreachPartition操作,并且在该操作内部,从静态连接池中,通过静态方法,获取到一个连接,
    使用之后再还回去。这样的话,甚至在多个RDD的partition之间,也可以复用连接了。而且可以让连接池采取懒创建的策略,并且空闲一段时间后,将其释放掉。
    
    dstream.foreachRDD { rdd =>
      rdd.foreachPartition { partitionOfRecords =>
        val connection = ConnectionPool.getConnection()
        partitionOfRecords.foreach(record => connection.send(record))
        ConnectionPool.returnConnection(connection)  
      }
    }
    
    
    案例:改写UpdateStateByKeyWordCount,将每次统计出来的全局的单词计数,写入一份,到MySQL数据库中。

    2、java案例

    创建mysql表

    mysql> use testdb;
    Reading table information for completion of table and column names
    You can turn off this feature to get a quicker startup with -A
    
    Database changed
    mysql> create table wordcount (
        ->   id integer auto_increment primary key,
        ->   updated_time timestamp NOT NULL default CURRENT_TIMESTAMP on update CURRENT_TIMESTAMP,
        ->   word varchar(255),
        ->   count integer
        -> );
    Query OK, 0 rows affected (0.05 sec)

    java代码

    ###ConnectionPool 
    
    package cn.spark.study.streaming;
    
    import java.sql.Connection;
    import java.sql.DriverManager;
    import java.util.LinkedList;
    
    /**
     * 简易版的连接池
     * @author Administrator
     *
     */
    public class ConnectionPool {
    
        // 静态的Connection队列
        private static LinkedList<Connection> connectionQueue;
        
        /**
         * 加载驱动
         */
        static {
            try {
                Class.forName("com.mysql.jdbc.Driver");
            } catch (ClassNotFoundException e) {
                e.printStackTrace();
            }  
        }
        
        /**
         * 获取连接,多线程访问并发控制
         * @return
         */
        public synchronized static Connection getConnection() {
            try {
                if(connectionQueue == null) {
                    connectionQueue = new LinkedList<Connection>();
                    for(int i = 0; i < 10; i++) {
                        Connection conn = DriverManager.getConnection(
                                "jdbc:mysql://spark1:3306/testdb", 
                                "", 
                                "");
                        connectionQueue.push(conn);  
                    }
                }
            } catch (Exception e) {
                e.printStackTrace();
            }
            return connectionQueue.poll();
        }
        
        /**
         * 还回去一个连接
         */
        public static void returnConnection(Connection conn) {
            connectionQueue.push(conn);  
        }
        
    }
    
    
    
    
    
    ###PersistWordCount
    
    package cn.spark.study.streaming;
    
    import java.sql.Connection;
    import java.sql.Statement;
    import java.util.Arrays;
    import java.util.Iterator;
    import java.util.List;
    
    import org.apache.spark.SparkConf;
    import org.apache.spark.api.java.JavaPairRDD;
    import org.apache.spark.api.java.function.FlatMapFunction;
    import org.apache.spark.api.java.function.Function;
    import org.apache.spark.api.java.function.Function2;
    import org.apache.spark.api.java.function.PairFunction;
    import org.apache.spark.api.java.function.VoidFunction;
    import org.apache.spark.streaming.Durations;
    import org.apache.spark.streaming.api.java.JavaDStream;
    import org.apache.spark.streaming.api.java.JavaPairDStream;
    import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
    import org.apache.spark.streaming.api.java.JavaStreamingContext;
    
    import com.google.common.base.Optional;
    
    import scala.Tuple2;
    
    /**
     * 基于持久化机制的实时wordcount程序
     * @author Administrator
     *
     */
    public class PersistWordCount {
    
        public static void main(String[] args) {
            SparkConf conf = new SparkConf()
                    .setMaster("local[2]")
                    .setAppName("PersistWordCount");  
            JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(5));
    
            jssc.checkpoint("hdfs://spark1:9000/wordcount_checkpoint");  
            
            JavaReceiverInputDStream<String> lines = jssc.socketTextStream("spark1", 9999);
            
            JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
    
                private static final long serialVersionUID = 1L;
    
                @Override
                public Iterable<String> call(String line) throws Exception {
                    return Arrays.asList(line.split(" "));  
                }
                
            });
            
            JavaPairDStream<String, Integer> pairs = words.mapToPair(
                    
                    new PairFunction<String, String, Integer>() {
    
                        private static final long serialVersionUID = 1L;
    
                        @Override
                        public Tuple2<String, Integer> call(String word)
                                throws Exception {
                            return new Tuple2<String, Integer>(word, 1);
                        }
                        
                    });
    
            JavaPairDStream<String, Integer> wordCounts = pairs.updateStateByKey(
                    
                    new Function2<List<Integer>, Optional<Integer>, Optional<Integer>>() {
    
                        private static final long serialVersionUID = 1L;
    
                        @Override
                        public Optional<Integer> call(List<Integer> values,
                                Optional<Integer> state) throws Exception {
                            Integer newValue = 0;
                            
                            if(state.isPresent()) {
                                newValue = state.get();
                            }
    
                            for(Integer value : values) {
                                newValue += value;
                            }
                            
                            return Optional.of(newValue);  
                        }
                        
                    });
            
            // 每次得到当前所有单词的统计次数之后,将其写入mysql存储,进行持久化,以便于后续的J2EE应用程序
            // 进行显示
            wordCounts.foreachRDD(new Function<JavaPairRDD<String,Integer>, Void>() {
    
                private static final long serialVersionUID = 1L;
    
                @Override
                public Void call(JavaPairRDD<String, Integer> wordCountsRDD) throws Exception {
                    // 调用RDD的foreachPartition()方法
                    wordCountsRDD.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Integer>>>() {
    
                        private static final long serialVersionUID = 1L;
    
                        @Override
                        public void call(Iterator<Tuple2<String, Integer>> wordCounts) throws Exception {
                            // 给每个partition,获取一个连接
                            Connection conn = ConnectionPool.getConnection();
                        
                            // 遍历partition中的数据,使用一个连接,插入数据库
                            Tuple2<String, Integer> wordCount = null;
                            while(wordCounts.hasNext()) {
                                wordCount = wordCounts.next();
                                
                                String sql = "insert into wordcount(word,count) "
                                        + "values('" + wordCount._1 + "'," + wordCount._2 + ")";  
                                
                                Statement stmt = conn.createStatement();
                                stmt.executeUpdate(sql);
                            }
                            
                            // 用完以后,将连接还回去
                            ConnectionPool.returnConnection(conn);
                        }
                    });
                    
                    return null;
                }
                
            });
            
            jssc.start();
            jssc.awaitTermination();
            jssc.close();
        }
        
    }
    
    
    
    
    ##运行脚本
    [root@spark1 streaming]# cat persistWordCount.sh 
    /usr/local/spark-1.5.1-bin-hadoop2.4/bin/spark-submit 
    --class cn.spark.study.streaming.PersistWordCount 
    --num-executors 3 
    --driver-memory 100m 
    --executor-memory 100m 
    --executor-cores 3 
    --files /usr/local/hive/conf/hive-site.xml 
    --driver-class-path /usr/local/hive/lib/mysql-connector-java-5.1.17.jar 
    /usr/local/spark-study/java/streaming/saprk-study-java-0.0.1-SNAPSHOT-jar-with-dependencies.jar 
    
    
    ##运行nc
    [root@spark1 ~]# nc -lk 9999
    hello word
    hello word
    hello java
    
    
    ##结果
    mysql> use testdb;
    mysql> select * from wordcount;
    +----+---------------------+-------+-------+
    | id | updated_time        | word  | count |
    +----+---------------------+-------+-------+
    |  1 | 2019-08-19 14:52:45 | hello |     1 |
    |  2 | 2019-08-19 14:52:45 | word  |     1 |
    |  3 | 2019-08-19 14:52:50 | hello |     2 |
    |  4 | 2019-08-19 14:52:50 | word  |     2 |
    |  5 | 2019-08-19 14:52:55 | hello |     2 |
    |  6 | 2019-08-19 14:52:55 | word  |     2 |
    |  7 | 2019-08-19 14:53:00 | hello |     2 |
    |  8 | 2019-08-19 14:53:00 | word  |     2 |
    |  9 | 2019-08-19 14:53:05 | hello |     2 |
    | 10 | 2019-08-19 14:53:05 | word  |     2 |
    | 11 | 2019-08-19 14:53:10 | hello |     2 |
    | 12 | 2019-08-19 14:53:10 | word  |     2 |
    | 13 | 2019-08-19 14:53:15 | hello |     3 |
    | 14 | 2019-08-19 14:53:15 | word  |     2 |
    | 15 | 2019-08-19 14:53:15 | java  |     1 |
    | 16 | 2019-08-19 14:53:20 | hello |     3 |
    | 17 | 2019-08-19 14:53:20 | word  |     2 |
    | 18 | 2019-08-19 14:53:20 | java  |     1 |
    | 19 | 2019-08-19 14:53:25 | hello |     3 |
    | 20 | 2019-08-19 14:53:25 | word  |     2 |
    | 21 | 2019-08-19 14:53:25 | java  |     1 |
    +----+---------------------+-------+-------+
    21 rows in set (0.00 sec)
  • 相关阅读:
    C#连接SQL Server测试
    2015结束,迎接2016
    notepad ++ 编辑 powershell profile 文件时的诡异问题
    安静的思考
    把生活过的像模像样已经很不容易
    查询SQL Server 版本信息
    一段SQL代码
    javascript面向对象编程的3种常见封装形式解析
    javascript中new操作符的原理
    关于javascript中this 指向的4种调用模式
  • 原文地址:https://www.cnblogs.com/weiyiming007/p/11377213.html
Copyright © 2020-2023  润新知