一、JDBC数据源案例
1、概述
Spark SQL支持使用JDBC从关系型数据库(比如MySQL)中读取数据。读取的数据,依然由DataFrame表示,可以很方便地使用Spark Core提供的各种算子进行处理。 这里有一个经验之谈,实际上用Spark SQL处理JDBC中的数据是非常有用的。比如说,你的MySQL业务数据库中,有大量的数据,比如1000万,然后,你现在需要编写一个程序, 对线上的脏数据某种复杂业务逻辑的处理,甚至复杂到可能涉及到要用Spark SQL反复查询Hive中的数据,来进行关联处理。 那么此时,用Spark SQL来通过JDBC数据源,加载MySQL中的数据,然后通过各种算子进行处理,是最好的选择。因为Spark是分布式的计算框架,对于1000万数据,肯定是分布式处理的。 而如果你自己手工编写一个Java程序,那么不好意思,你只能分批次处理了,先处理2万条,再处理2万条,可能运行完你的Java程序,已经是几天以后的事情了。 Java版本 Map<String, String> options = new HashMap<String, String>(); options.put("url", "jdbc:mysql://spark1:3306/testdb"); options.put("dbtable", "students"); DataFrame jdbcDF = sqlContext.read().format("jdbc"). options(options).load(); Scala版本 val jdbcDF = sqlContext.read.format("jdbc").options( Map("url" -> "jdbc:mysql://spark1:3306/testdb", "dbtable" -> "students")).load() 案例:查询分数大于80分的学生信息
#授权表权限 grant all on testdb.* to ''@'spark1' with grant option; flush privileges;
2、准备数据
mysql> create database testdb; mysql> use testdb; mysql> create table student_infos(name varchar(20), age integer); mysql> create table student_scores(name varchar(20), score integer); mysql> insert into student_infos values('leo', 18),('marry', 17),('jack', 19); mysql> insert into student_scores values('leo', 88),('marry', 99),('jack', 60); mysql> create table good_student_infos(name varchar(20), age integer, score integer);
3、java案例实现
package cn.spark.study.sql; import java.sql.Connection; import java.sql.DriverManager; import java.sql.Statement; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function; import org.apache.spark.api.java.function.PairFunction; import org.apache.spark.api.java.function.VoidFunction; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.RowFactory; import org.apache.spark.sql.SQLContext; import org.apache.spark.sql.types.DataTypes; import org.apache.spark.sql.types.StructField; import org.apache.spark.sql.types.StructType; import scala.Tuple2; /** * JDBC数据源 * @author Administrator * */ public class JDBCDataSource { public static void main(String[] args) { SparkConf conf = new SparkConf() .setAppName("JDBCDataSource"); JavaSparkContext sc = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(sc); // 总结一下 // jdbc数据源 // 首先,是通过SQLContext的read系列方法,将mysql中的数据加载为DataFrame // 然后可以将DataFrame转换为RDD,使用Spark Core提供的各种算子进行操作 // 最后可以将得到的数据结果,通过foreach()算子,写入mysql、hbase、redis等等db / cache中 // 分别将mysql中两张表的数据加载为DataFrame Map<String, String> options = new HashMap<String, String>(); options.put("url", "jdbc:mysql://spark1:3306/testdb"); options.put("dbtable", "student_infos"); DataFrame studentInfosDF = sqlContext.read().format("jdbc") .options(options).load(); options.put("dbtable", "student_scores"); DataFrame studentScoresDF = sqlContext.read().format("jdbc") .options(options).load(); // 将两个DataFrame转换为JavaPairRDD,执行join操作 JavaPairRDD<String, Tuple2<Integer, Integer>> studentsRDD = studentInfosDF.javaRDD().mapToPair( new PairFunction<Row, String, Integer>() { private static final long serialVersionUID = 1L; @Override public Tuple2<String, Integer> call(Row row) throws Exception { return new Tuple2<String, Integer>(row.getString(0), Integer.valueOf(String.valueOf(row.get(1)))); } }) .join(studentScoresDF.javaRDD().mapToPair( new PairFunction<Row, String, Integer>() { private static final long serialVersionUID = 1L; @Override public Tuple2<String, Integer> call(Row row) throws Exception { return new Tuple2<String, Integer>(String.valueOf(row.get(0)), Integer.valueOf(String.valueOf(row.get(1)))); } })); // 将JavaPairRDD转换为JavaRDD<Row> JavaRDD<Row> studentRowsRDD = studentsRDD.map( new Function<Tuple2<String,Tuple2<Integer,Integer>>, Row>() { private static final long serialVersionUID = 1L; @Override public Row call( Tuple2<String, Tuple2<Integer, Integer>> tuple) throws Exception { return RowFactory.create(tuple._1, tuple._2._1, tuple._2._2); } }); // 过滤出分数大于80分的数据 JavaRDD<Row> filteredStudentRowsRDD = studentRowsRDD.filter( new Function<Row, Boolean>() { private static final long serialVersionUID = 1L; @Override public Boolean call(Row row) throws Exception { if(row.getInt(2) > 80) { return true; } return false; } }); // 转换为DataFrame List<StructField> structFields = new ArrayList<StructField>(); structFields.add(DataTypes.createStructField("name", DataTypes.StringType, true)); structFields.add(DataTypes.createStructField("age", DataTypes.IntegerType, true)); structFields.add(DataTypes.createStructField("score", DataTypes.IntegerType, true)); StructType structType = DataTypes.createStructType(structFields); DataFrame studentsDF = sqlContext.createDataFrame(filteredStudentRowsRDD, structType); Row[] rows = studentsDF.collect(); for(Row row : rows) { System.out.println(row); } // 将DataFrame中的数据保存到mysql表中 // 这种方式是在企业里很常用的,有可能是插入mysql、有可能是插入hbase,还有可能是插入redis缓存 studentsDF.javaRDD().foreach(new VoidFunction<Row>() { private static final long serialVersionUID = 1L; @Override public void call(Row row) throws Exception { String sql = "insert into good_student_infos values(" + "'" + String.valueOf(row.getString(0)) + "'," + Integer.valueOf(String.valueOf(row.get(1))) + "," + Integer.valueOf(String.valueOf(row.get(2))) + ")"; Class.forName("com.mysql.jdbc.Driver"); Connection conn = null; Statement stmt = null; try { conn = DriverManager.getConnection( "jdbc:mysql://spark1:3306/testdb", "", ""); stmt = conn.createStatement(); stmt.executeUpdate(sql); } catch (Exception e) { e.printStackTrace(); } finally { if(stmt != null) { stmt.close(); } if(conn != null) { conn.close(); } } } }); sc.close(); } }