一、共享变量
1、共享变量工作原理
Spark一个非常重要的特性就是共享变量。
默认情况下,如果在一个算子的函数中使用到了某个外部的变量,那么这个变量的值会被拷贝到每个task中。此时每个task只能操作自己的那份变量副本。如果多个task想
要共享某个变量,那么这种方式是做不到的。
Spark为此提供了两种共享变量,一种是Broadcast Variable(广播变量),另一种是Accumulator(累加变量)。Broadcast Variable会将使用到的变量,仅仅为每个节点拷贝
一份,更大的用处是优化性能,减少网络传输以及内存消耗。Accumulator则可以让多个task共同操作一份变量,主要可以进行累加操作。
2、Broadcast Variable
Spark提供的Broadcast Variable,是只读的。并且在每个节点上只会有一份副本,而不会为每个task都拷贝一份副本。因此其最大作用,就是减少变量到各个节点的网络传 输消耗,以及在各个节点上的内存消耗。此外,spark自己内部也使用了高效的广播算法来减少网络消耗。 可以通过调用SparkContext的broadcast()方法,来针对某个变量创建广播变量。然后在算子的函数内,使用到广播变量时,每个节点只会拷贝一份副本了。每个节点可以使 用广播变量的value()方法获取值。记住,广播变量,是只读的。 ------java实现------ package cn.spark.study.core; import java.util.Arrays; import java.util.List; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function; import org.apache.spark.api.java.function.VoidFunction; import org.apache.spark.broadcast.Broadcast; /** * 广播变量 * @author bcqf * */ public class BroadcastVariable { public static void main(String[] args) { SparkConf conf = new SparkConf().setAppName("BroadcastVariable").setMaster("local"); JavaSparkContext sc = new JavaSparkContext(conf); // 在java中,创建共享变量,就是调用SparkContext的broadcast()方法 // 获取的返回结果是Broadcast<T>类型 final int factor = 3; final Broadcast<Integer> factorBroadcast = sc.broadcast(factor); List<Integer> numberList = Arrays.asList(1,2,3,4,5); JavaRDD<Integer> numbers = sc.parallelize(numberList); //让集合中的每个数字,都乘以外部定义的那个factor JavaRDD<Integer> multipleNumbers = numbers.map(new Function<Integer, Integer>() { private static final long serialVersionUID = 1L; @Override public Integer call(Integer v1) throws Exception { // 使用共享变量时,调用其value()方法,即可获取其内部封装的值 int factor = factorBroadcast.value(); return v1 * factor; } }); multipleNumbers.foreach(new VoidFunction<Integer>() { private static final long serialVersionUID = 1L; @Override public void call(Integer t) throws Exception { System.out.println(t); } }); sc.close(); } } //结果
3
6
9
12
15
--------scala实现-------- package cn.spark.study.core import org.apache.spark.SparkConf import org.apache.spark.SparkContext object BroadcastVariable { def main(args: Array[String]) { val conf = new SparkConf().setAppName("BroadcastVariable").setMaster("local") val sc = new SparkContext(conf) val factor = 3; val factorBroadcast = sc.broadcast(factor) val numberArray = Array(1,2,3,4,5) val numbers = sc.parallelize(numberArray, 1) val multipleNumbers = numbers.map { num => num * factorBroadcast.value} multipleNumbers.foreach { num => println(num)} } }
3、Accumulator
Spark提供的Accumulator,主要用于多个节点对一个变量进行共享性的操作。Accumulator只提供了累加的功能。但是确给我们提供了多个task对一个变量并行操作的功能。 但是task只能对Accumulator进行累加操作,不能读取它的值。只有Driver程序可以读取Accumulator的值。 ------java实现------- package cn.spark.study.core; import java.util.Arrays; import java.util.List; import org.apache.spark.Accumulator; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.VoidFunction; public class AccumulatorVariable { public static void main(String[] args) { SparkConf conf = new SparkConf().setAppName("Accumulator").setMaster("local"); JavaSparkContext sc = new JavaSparkContext(conf); // 创建Accumulator变量 // 需要调用SparkContext的accumulator()方法 final Accumulator<Integer> sum = sc.accumulator(0); List<Integer> numberList = Arrays.asList(1,2,3,4,5); JavaRDD<Integer> numbers = sc.parallelize(numberList); numbers.foreach(new VoidFunction<Integer>() { private static final long serialVersionUID = 1L; @Override public void call(Integer t) throws Exception { // 然后在函数内部,就可以对Accumulator变量,调用add()方法,累加值 sum.add(t); } }); // 在driver程序中,可以调用Accumulator的value()方法,获取其值 System.out.println(sum.value()); sc.close(); } }
//结果
15
--------scala实现--------- package cn.spark.study.core import org.apache.spark.SparkConf import org.apache.spark.SparkContext object AccumulatorVariable { def main(args: Array[String]) { val conf = new SparkConf().setAppName("AccumulatorVariable").setMaster("local") val sc = new SparkContext(conf) val sum = sc.accumulator(0) val numberArray = Array(1,2,3,4,5) val numbers = sc.parallelize(numberArray, 1) numbers.foreach {num => sum += num } println(sum) } }