• 数据库分库分表(sharding)系列(二) 全局主键生成策略


    本文将主要介绍一些常见的全局主键生成策略,然后重点介绍flickr使用的一种非常优秀的全局主键生成方案。关于分库分表(sharding)的拆分策略和实施细则,请参考该系列的前一篇文章:数据库分库分表(sharding)系列(一) 拆分实施策略和示例演示 本文原文连接: http://blog.csdn.net/bluishglc/article/details/7710738 ,转载请注明出处!

    第一部分:一些常见的主键生成策略

    一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键生成机制。一方面,某个分区数据库自生成的ID无法保证在全局上是唯一的;另一方面,应用程序在插入数据之前需要先获得ID,以便进行SQL路由。目前几种可行的主键生成策略有:
    1. UUID:使用UUID作主键是最简单的方案,但是缺点也是非常明显的。由于UUID非常的长,除占用大量存储空间外,最主要的问题是在索引上,在建立索引和基于索引进行查询时都存在性能问题。
    2. 结合数据库维护一个Sequence表:此方案的思路也很简单,在数据库中建立一个Sequence表,表的结构类似于:

    [sql] view plaincopy在CODE上查看代码片派生到我的代码片
     
    1. CREATE TABLE `SEQUENCE` (  
    2.     `tablename` varchar(30) NOT NULL,  
    3.     `nextid` bigint(20) NOT NULL,  
    4.     PRIMARY KEY (`tablename`)  
    5. ) ENGINE=InnoDB   

    每当需要为某个表的新纪录生成ID时就从Sequence表中取出对应表的nextid,并将nextid的值加1后更新到数据库中以备下次使用。此方案也较简单,但缺点同样明显:由于所有插入任何都需要访问该表,该表很容易成为系统性能瓶颈,同时它也存在单点问题,一旦该表数据库失效,整个应用程序将无法工作。有人提出使用Master-Slave进行主从同步,但这也只能解决单点问题,并不能解决读写比为1:1的访问压力问题。

    除此之外,还有一些方案,像对每个数据库结点分区段划分ID,以及网上的一些ID生成算法,因为缺少可操作性和实践检验,本文并不推荐。实际上,接下来,我们要介绍的是Fickr使用的一种主键生成方案,这个方案是目前我所知道的最优秀的一个方案,并且经受了实践的检验,可以为大多数应用系统所借鉴。

    第二部分:一种极为优秀的主键生成策略

    flickr开发团队在2010年撰文介绍了flickr使用的一种主键生成测策略,同时表示该方案在flickr上的实际运行效果也非常令人满意,原文连接:Ticket Servers: Distributed Unique Primary Keys on the Cheap 这个方案是我目前知道的最好的方案,它与一般Sequence表方案有些类似,但却很好地解决了性能瓶颈和单点问题,是一种非常可靠而高效的全局主键生成方案。

    图1. flickr采用的sharding主键生成方案示意图(点击查看大图)

    flickr这一方案的整体思想是:建立两台以上的数据库ID生成服务器,每个服务器都有一张记录各表当前ID的Sequence表,但是Sequence中ID增长的步长是服务器的数量,起始值依次错开,这样相当于把ID的生成散列到了每个服务器节点上。例如:如果我们设置两台数据库ID生成服务器,那么就让一台的Sequence表的ID起始值为1,每次增长步长为2,另一台的Sequence表的ID起始值为2,每次增长步长也为2,那么结果就是奇数的ID都将从第一台服务器上生成,偶数的ID都从第二台服务器上生成,这样就将生成ID的压力均匀分散到两台服务器上,同时配合应用程序的控制,当一个服务器失效后,系统能自动切换到另一个服务器上获取ID,从而保证了系统的容错。

    关于这个方案,有几点细节这里再说明一下:

    1. flickr的数据库ID生成服务器是专用服务器,服务器上只有一个数据库,数据库中表都是用于生成Sequence的,这也是因为auto-increment-offset和auto-increment-increment这两个数据库变量是数据库实例级别的变量。
    2. flickr的方案中表格中的stub字段只是一个char(1) NOT NULL存根字段,并非表名,因此,一般来说,一个Sequence表只有一条纪录,可以同时为多张表生成ID,如果需要表的ID是有连续的,需要为该表单独建立Sequence表

    3. 方案使用了mysql的LAST_INSERT_ID()函数,这也决定了Sequence表只能有一条记录。
    4. 使用REPLACE INTO插入数据,这是很讨巧的作法,主要是希望利用mysql自身的机制生成ID,不仅是因为这样简单,更是因为我们需要ID按照我们设定的方式(初值和步长)来生成。

    5. SELECT LAST_INSERT_ID()必须要于REPLACE INTO语句在同一个数据库连接下才能得到刚刚插入的新ID,否则返回的值总是0
    6. 该方案中Sequence表使用的是MyISAM引擎,以获取更高的性能,注意:MyISAM引擎使用的是表级别的锁,MyISAM对表的读写是串行的,因此不必担心在并发时两次读取会得到同一个ID(另外,应该程序也不需要同步,每个请求的线程都会得到一个新的connection,不存在需要同步的共享资源)。经过实际对比测试,使用一样的Sequence表进行ID生成,MyISAM引擎要比InnoDB表现高出很多!

    7. 可使用纯JDBC实现对Sequence表的操作,以便获得更高的效率,实验表明,即使只使用Spring JDBC性能也不及纯JDBC来得快!

    实现该方案,应用程序同样需要做一些处理,主要是两方面的工作:


    1. 自动均衡数据库ID生成服务器的访问
    2. 确保在某个数据库ID生成服务器失效的情况下,能将请求转发到其他服务器上执行。

  • 相关阅读:
    php中rsa加密及解密和签名及验签
    php中ssl开发的若干问题
    手机web下拉加载
    SVN:One or more files are in a conflicted state
    phpstorm安装laravel-ide-helper实现自动完成、代码提示和跟踪
    Jquery AJAX POST与GET之间的区别
    $.ajax() ,$.post(),$.get() 的用法
    PHP XML和数组互相转换
    [2017-10-25]Abp系列——集成消息队列功能(基于Rebus.Rabbitmq)
    [2017-10-26]Abp系列——DTO入参验证使用方法及经验分享
  • 原文地址:https://www.cnblogs.com/weijueye/p/4303057.html
Copyright © 2020-2023  润新知