• HDOJ 1081(ZOJ 1074) To The Max(动态规划)


    Problem Description
    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

    As an example, the maximal sub-rectangle of the array:

    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2

    is in the lower left corner:

    9 2
    -4 1
    -1 8

    and has a sum of 15.

    Input
    The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

    Output
    Output the sum of the maximal sub-rectangle.

    Sample Input
    4
    0 -2 -7 0 9 2 -6 2
    -4 1 -4 1 -1
    8 0 -2

    Sample Output
    15

    #include <stdio.h>
    #include <string.h>
    #include <stdlib.h>
    int a[2000];
    int dp[150][150];
    
    int main(){
       int n;
       while(scanf("%d",&n)==1){
            int t;
          memset(dp,0,sizeof(dp));
          for(int i=1;i<=n;i++){
             for(int j=1;j<=n;j++){
                scanf("%d",&t);
                dp[i][j]=t+dp[i-1][j];
               /// printf("i=%d",i);
             }
          }
    //        for(int i=0;i<=n;i++){
    //         for(int j=0;j<=n;j++){
    //                printf("%4d",dp[i][j]);
    //         }
    //         printf("
    ");
    //        }
          int maxx=-1000;
          for(int i=1;i<=n;i++){
              for(int j=i;j<=n;j++){
                    int sum=0;
                  for(int k=1;k<=n;k++){
                        t=dp[j][k]-dp[i-1][k];
                        sum+=t;
                        if(sum<0)  sum=0;
                        if(sum>maxx) maxx=sum;
                  }
              }
          }
          printf("%d
    ",maxx);
       }
       return 0;
    }
    
  • 相关阅读:
    SQL 语法解释器jsqlparser
    《JAVA与模式》之解释器模式
    程序猿应该了解的内容以及程序猿如何强迫自己学习(思考篇)
    强迫自己学习(心态篇),国庆,你准备去哪疯?
    强迫自己学习(实践篇),以及关于写博客的几点建议
    JAVA GC垃圾收集器的分析
    JVM内存模型及内存分配过程
    Extended Traffic LightOJ
    HDU 4616 Game 树形DP
    POJ 3164 Command Network
  • 原文地址:https://www.cnblogs.com/webmen/p/5739560.html
Copyright © 2020-2023  润新知