• POJ 1423 Big Number


    Description

    In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.
    Input

    Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 <= m <= 10^7 on each line.
    Output

    The output contains the number of digits in the factorial of the integers appearing in the input.
    Sample Input

    2
    10
    20
    Sample Output

    7
    19

    (部分转载)
    补充知识 :若n=a+b^10,(a<1,b∈N),则n的位数为b。
    所以要求一个数字num有多少位,可以用(int)log10(num)+1,这样就求出num有多少位.
    如果sum=n*(n-1)(n-2)……*1,那么log10(sum)=log10(n)+
    log10(n-1)+…..+log10(2)+log10(1)。即sum的位数是
    ( int )( log10(n)+log10(n-1)+…..+log10(2)+log10(1) )+1。
    (从小到大算)

    下面这一种方法是程序外打表法,需要消耗时间。
    还有一种是程序外打表,就是直接给复制,再导入,则肯定是0ms。

    #include <stdio.h>
    #include <math.h>
    
    int a[10000010];
    int main()
    {
        double d;
        int i;
        int t;
        int n;
        for(i=1,d=0;i<10000005;i++){
            d+=log10(i);
            a[i]=(int)d+1;
        }
    
        scanf("%d",&t);
        while(t-->0){
            scanf("%d",&n);
            printf("%d
    ",a[n]);
    
        }
        return 0;
    }
    

    还有一种方法:
    利用Stirling公式. n!≈sqrt(2*pi*n)*[(n/e)^n]
    n越大,答案越准确。
    在n=1的情况下,也最大不过相差0.2.
    这里只要计算位数,所以是可以用的。
    此处的:
    e ≈ 2.7182818284590452354, pi ≈ 3.141592653589793239;

    #include<iostream>
    #include<cmath>
    using namespace std;
    const double e = 2.7182818284590452354, pi = 3.141592653589793239;
    double strling_digits_num(int n)
    {
            return log10(2*pi*n)/2.0+n*(log10(n/e));
    }
    
    int main()
    {
            int t;
            cin>>t;
            while(t--)
            {
                    int n;
                    cin>>n;
                    double m=0;
                    m=strling_digits_num(n);
                    int answer=(int)m;
                    answer++;
                    cout<<answer<<endl;
            }
            return 0;
    }
    
  • 相关阅读:
    js模板引擎v5
    js模板引擎v6
    python cookbook学习笔记[一次完成多个字符串的替换]
    您可能没注意到的ie6 select bug
    lambda参数写法问题
    python dict2种遍历方式及区别
    记一次 AXI id debug
    R2B fpga flow script
    axi 1.0
    advanced fpga design
  • 原文地址:https://www.cnblogs.com/webmen/p/5739551.html
Copyright © 2020-2023  润新知