python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share
这几年一直在用TensorFlow和Theano,说点个人感受 :D
优点:
1、Keras基于python,backend可以是TensorFlow或Theano,人气比较旺。
2、和其他high-level API一样,都是直接提供上层的框架,很快可以搞出个神经网络原型。
缺点:
1、不支持seq2seq,搞不了高级点的nlp(现在好像支持了)。不过我发现tflearn,lasagne 都不支持seq2seq。目前只知道torch7支持。
2、在TensorFlow backend时,跑同样的模型比纯TensorFlow要慢一倍。。。
3、没有增强学习工具箱,自己修改实现很麻烦。
4、封装得太高级,训练细节不能修改、penalty细节很难修改、不合适算法研究。
5、用TensorFLow backend时速度比纯TensorFLow 下要慢很多。
6、最近更新很慢。
综上所述,我个人觉得:
Keras 适合快速体验 ,但若想学扎实一点则用 Tensorlayer 或者直接使用 TensorFlow 和 Theano。
首先必须要说的就是,不管你要做什么,只要是deep leanring有关的,那么tensorflow是你不可能绕过的,就不说现在很多人论文用tensorflow,工业界用tensorflow的也很多,而且Google推出了tpc,毫无疑问有了tpu,tensorflow速度肯定会更快,可以很明显的感觉到Google在强推tensorflow,而tensorflow目前也算是默认的老大地位。
有了这一点,我们就可以来谈谈keras了,因为keras的后端有tensorflow,也就是说要使用tensorflow可以用keras来简单的代替。我之前一直觉得keras封装的太高级,不够灵活,而tensorflow又显得很笨重,所以对keras和tensorflow一直有点抵触,不想有tensorflow或者keras来实现模型。
后面出了pytorch,我就去玩pytorch去了,感觉pytorch特别轻,而且很灵活,突然我发现pytorch有好多地方和keras其实挺像的,于是有回到keras看了看,发现其实可以把keras和tensorflow结合起来用,这样既轻便,同时也有很强的灵活性,相当于把一些重复性的繁琐的操作用keras封装起来,而一些自己需要设计的东西呢还是可以用tensorflow自己设计,可以看看这个链接将Keras作为tensorflow的精简接口 - Keras中文文档。
pytorch由于动态图的关系确实很灵活,但是performance应该不算很好,没有tensorboard可视化,虽然github有人自己想办法弄出来了,同时也分享了,但是还是略显麻烦,而且分布式支持应该也不太好,毕竟定位于科研,而caffe2应该是fb强推的工业化框架。
所以keras+tensorflow应该算是比较好的一种解决办法。对于初学者可以用keras搭搭积木,熟悉之后可以和tensorflow配合起来实现很多复杂功能。所以keras提供了从初学者到高级使用者都可以满足的功能,所以keras其实还是挺好的。
另外对于速度方面我没有比较过,不知道keras到底慢在什么方面,如果用keras+tensorflow,我觉得速度应该和tensorflow相当,毕竟只是使用了几个简单的layer封装,而训练过程还是暴露在tensorflow下。
个人愚见,以上。
keras的几大特点:
文档齐全
上手快速
纯Python编写
更新迅速
论坛活跃
就是运行速度不太快= =
不过我又不在乎速度~
Keras中文文档
记得点进github的页面加颗星哦~
https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149( 欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章)