• 646. Maximum Length of Pair Chain


    Problem statement

    You are given n pairs of numbers. In every pair, the first number is always smaller than the second number.

    Now, we define a pair (c, d) can follow another pair (a, b) if and only if b < c. Chain of pairs can be formed in this fashion.

    Given a set of pairs, find the length longest chain which can be formed. You needn't use up all the given pairs. You can select pairs in any order.

    Example 1:

    Input: [[1,2], [2,3], [3,4]]
    Output: 2
    Explanation: The longest chain is [1,2] -> [3,4]

    Note:

    1. The number of given pairs will be in the range [1, 1000].

    Solution one: Greedy algorithm

    The first solution is greedy algorithm. 

    • Sort the pairs by the increasing order of end value.
    • Keep a value of minimum end value.
    • Update the minimum end value if current pair and next pair are overlapped.
    • count  number + 1 if the start value of next pairis greater than minimum end and update the minimum end.

    Time complexity is O(n). space complexity is O(1).

    class Solution {
    public:
        int findLongestChain(vector<vector<int>>& pairs) {
            sort(pairs.begin(), pairs.end(), [](vector<int> l, vector<int> r) 
                 { if(l[0] == r[0]){ return l[1] < r[1];}
                     return l[0] < r[0];});
            int len = 1;
            int min_end = pairs[0][1];
            for(int i = 1; i < pairs.size(); i++){
                if(min_end >= pairs[i][1]){
                    min_end = pairs[i][1];
                } else if(min_end < pairs[i][0]){
                    len++;
                    min_end = pairs[i][1];
                }
            }
            return len;
        }
    };

    Another concise version of solution one.

    • Since all pairs are sorted, we just need to find the first non-overlapped pair with current pair. 
    • Count number + 1 and update the current pair.

    Time complexity is O(n). Space complexity is O(1).

    class Solution {
    public:
        int findLongestChain(vector<vector<int>>& pairs) {
            // sort the pair by increasing order according to the end
            sort(pairs.begin(), pairs.end(), [](vector<int> l, vector<int> r) { return l[1] < r[1]; });
            int len = 1;
            for(int i = 0, j = 1; j < pairs.size(); j++){
                if(pairs[i][1] < pairs[j][0]){
                    len++;
                    i = j;
                }
            }
            return len;
        }
    };

    Solution two: DP.

    It is similar with 300. Longest Increasing Subsequence

    For each element, dp[i], we need loop back from all previous elements to find the solution.

    Meanwhile, update the dp[i] and find the maximum length.

    Time complexity is O(n * n), space complexity is O(n). Obviously dp solution for this problem is not optimal, but it is still worth to learn how to deduce the dp formula.

    class Solution {
    public:
        int findLongestChain(vector<vector<int>>& pairs) {
            // sort the pair by increasing order according to the end
            sort(pairs.begin(), pairs.end(), [](vector<int> l, vector<int> r) { return l[1] < r[1]; });
            int size = pairs.size();
            int dp[size] = {1};
            int max_len = 1;
            for(int i = 1; i < pairs.size(); i++){
                for(int j = 0; j < i; j++){
                    if(pairs[j][1] < pairs[i][0]){
                        dp[i] = max(dp[i], dp[j] + 1);
                    }
                }
                max_len = max(max_len, dp[i]);
            }
            return max_len;
        }
    };
  • 相关阅读:
    易语言软件加VMProtect壳的正确方法
    ghost系统到硬盘完后,重启进入winxp安装的画面变成了蓝屏
    万象客户端设置服务端ip保存在注册表的位置
    php乱码解决
    远程桌面Default.rdp 中各个参数的含义
    关闭自动检测磁盘
    关于collapsed margin(外边距合并)
    position定位
    grunt-replace和grunt-include-replace问题
    关于动态生成dom绑定事件失效的原因
  • 原文地址:https://www.cnblogs.com/wdw828/p/7231954.html
Copyright © 2020-2023  润新知