• 169. Majority Element


    Problem statement:

    Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋ times.

    You may assume that the array is non-empty and the majority element always exist in the array.

    Solution one: sorting(AC)

    The number of majority elements is greater than n/2. It must take n/2 if we sort the array no matter by ascending or descending order.

    Time complexity is O(nlgn). 

    class Solution {
    public:
        int majorityElement(vector<int>& nums) {
            sort(nums.begin(), nums.end());
            return nums[nums.size() /2];
        }
    };

    Solution two: hash table(AC)

    We can employ a hash table indexed by the element, corresponding to the number of the element.

    loop from the beginning to end, Once the number of an element is greater than n / 2, return the element.

    The worst case of time complexity is O(n), generally, it is less than O(n). 

    The worst case of space complexity is O(n), generally is less than O(n).

    class Solution {
    public:
        int majorityElement(vector<int>& nums) {
            int size = nums.size();
            unordered_map<int, int> table;
            for(auto num : nums){
                if((++table[num]) > size / 2){
                    return num;    
                }
            }
            return -1;
        }
    };

    Solution three: Boyer-Moore majority vote system(AC)

    We implement the Boyer-Moore majority vote system, using the philosophy of counteracting. 

    One variable, candidate, represents the candidate, one, cnt,  represents the number of the candidate.

    • If count == 0; candidate = num;
    • else if candidate = num ---> count++;
    • else if candidate != num ---> count--;

    Time complexity is O(n). Space complexity is O(1).

    class Solution {
    public:
        int majorityElement(vector<int>& nums) {
            int candidate = 0;
            int cnt = 0;
            for(auto num : nums){
                if(cnt == 0){
                    candidate = num;
                    cnt++;
                } else if (candidate == num) {
                    cnt++;
                } else {
                    cnt--;
                }
            }
            return candidate;
        }
    };
  • 相关阅读:
    tslib編译和安装
    Web服务器的工作原理
    激励一生的六个经典故事
    VS2010中创建安装项目
    vue中img标签图片 加载时 与 加载失败 的处理方法
    Vue函数式组件的应用
    深入浅出Object.defineProperty()
    重学Git(一)
    backgroundblendmode
    箭头流程图前端实现
  • 原文地址:https://www.cnblogs.com/wdw828/p/6911211.html
Copyright © 2020-2023  润新知