• 209. Minimum Size Subarray Sum


    Problem statement:

    Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.

    For example, given the array [2,3,1,2,4,3] and s = 7,
    the subarray [4,3] has the minimal length under the problem constraint.

    Solution:

    It looks like 53. Maximum Subarray. But they are different solutions. I solve this problem by two pointers, left and right. The return value is the min length which is greater than or equal to the target. I can control the movement of these two pointers to update the min length.

    Basic idea:

    • If sum >= target, left moves to the end and minus the value of left, meanwhile update the min length.
    • One terminating condition is left > right, that means we already find the min length is 1 and return. Otherwise, I find until the end.
    • If sum < target, right moves to the end and plus the value of right.

    Since left and right move at most n steps. Time complexity is O(2 * n) ---> O(n).

    class Solution {
    public:
        int minSubArrayLen(int s, vector<int>& nums) {
            if(nums.empty()){
                return 0;
            }
            int left = 0; 
            int right = 0;
            int sum = nums[left];
            int len = INT_MAX;
            while(left <= right && left < nums.size() && right < nums.size()){
                // if current sum is a solution
                if(sum >= s){
                    // update the len
                    len = min(len, right - left + 1);
                    // update the sum
                    // minus first and move left towards end
                    sum -= nums[left++];
                } else {
                    // the sum is still less than target
                    // move right to the end and update the sum
                    sum += nums[++right];
                }
            }
            // return 0 if no answer
            return len == INT_MAX ? 0 : len;
        }
    };
  • 相关阅读:
    JS生成Guid
    MVC——分页
    MVC入门——删除页
    MVC入门——编辑页
    MVC入门——详细页
    MVC入门——列表页
    MVC入门——增
    pandas使用
    简单线性回归预测实现
    flask 自定义url转换器
  • 原文地址:https://www.cnblogs.com/wdw828/p/6876434.html
Copyright © 2020-2023  润新知