Given a string s, partition s such that every substring of the partition is a palindrome.
Return the minimum cuts needed for a palindrome partitioning of s.
For example, given s = "aab"
,
Return 1
since the palindrome partitioning ["aa","b"]
could be produced using 1 cut.
Solution:
Compare with 131. Palindrome Partitioning, this is a DP problem. In order to pass the OJ, there are two DP, the first one is the initialization of the table, it records if from i to j is a palindrome.
class Solution { public: int minCut(string s) { if(s.empty()){ return 0; } int size = s.size(); // size * size table // i to j is a palindrome or not vector<vector<bool>> table(size, vector<bool>(size, false)); initialize(table, s); vector<int> dp(size + 1); for(int i = 0; i <= size; i++){ dp[i] = i - 1; } for(int i = 1; i <= size; i++){ for(int j = 0; j < i; j++){ if(table[j][i - 1]){ dp[i] = min(dp[i], dp[j] + 1); } } } return dp[size]; } private: void initialize(vector<vector<bool>>& table, string s){ for(int i = 0; i < s.size(); i++){ table[i][i] = true; } for(int i = 0; i < s.size() - 1; i++){ table[i][i + 1] = s[i] == s[i + 1]; } for(int i = s.size() - 1; i >= 0; i--){ for(int j = i + 2; j < s.size(); j++){ table[i][j] = table[i + 1][j - 1] && s[i] == s[j]; } } return; } };