• 深度学习实践系列(2)- 搭建notMNIST的深度神经网络


    如果你希望系统性的了解神经网络,请参考零基础入门深度学习系列 ,下面我会粗略的介绍一下本文中实现神经网络需要了解的知识。

    什么是深度神经网络?

    神经网络包含三层:输入层(X)、隐藏层和输出层:f(x)

    每层之间每个节点都是完全连接的,其中包含权重(W)。每层都存在一个偏移值(b)。

    每一层节点的计算方式如下:

    其中g()代表激活函数,o()代表softmax输出函数。

    使用Flow Graph的方式来表达如何正向推导神经网络,可以表达如下:

    x: 输入值

    a(x):表示每个隐藏层的pre-activation的数据,由前一个隐藏层数据(h)、权重(w)和偏移值(b)计算而来

    h(x):表示每个隐藏层的数据

    f(x):表示输出层数据

    激活函数ReLUs

    激活函数有很多种类,例如sigmoid、tanh、ReLUs,对于深度神经网络而言,目前最流行的是ReLUs。

    关于几种激活函数的对比可以参见:常用激活函数的总结与比较

    ReLUs函数如下:

    反向传播

    现在,我们需要知道一个神经网络的每个连接上的权值是如何得到的。我们可以说神经网络是一个模型,那么这些权值就是模型的参数,也就是模型要学习的东西。然而,一个神经网络的连接方式、网络的层数、每层的节点数这些参数,则不是学习出来的,而是人为事先设置的。对于这些人为设置的参数,我们称之为超参数(Hyper-Parameters)。

    接下来,我们将要介绍神经网络的训练算法:反向传播算法。

    具体内容请参考:零基础入门深度学习(3) - 神经网络和反向传播算法

    SGD

    梯度下降算法是一种不断调整参数值从而达到减少Loss function的方法,通过不断迭代而获得最佳的权重值。梯度下降传统上是每次迭代都使用全部训练数据来进行参数调整,随机梯度下降则是使用少量训练数据来进行调整。

    关于GD和SGD的区别可以参考:GD(梯度下降)和SGD(随机梯度下降)

    正则化和Dropout

    正则化和Dropout都是一些防止过度拟合的方法,详细介绍可以参考:正则化方法:L1和L2 regularization、数据集扩增、dropout

    正则化:通过在Loss function中加入对权重(w)的惩罚,可以限制权重值变得非常大

    Dropout: 通过随机抛弃一些节点,使得神经网络更加多样性,然后组合起来获得的结果更加通用。

    好吧,基本的概念大概介绍了一遍,开始撸代码啦。

    请先参考深度学习实践系列(1)- 从零搭建notMNIST逻辑回归模型,获得notMNIST.pickle的训练数据。

    1. 引用第三方库

    # These are all the modules we'll be using later. Make sure you can import them
    # before proceeding further.
    from __future__ import print_function
    import numpy as np
    import tensorflow as tf
    from six.moves import cPickle as pickle
    from six.moves import range

    2. 读取数据

    pickle_file = 'notMNIST.pickle'
    
    with open(pickle_file, 'rb') as f:
      save = pickle.load(f)
      train_dataset = save['train_dataset']
      train_labels = save['train_labels']
      valid_dataset = save['valid_dataset']
      valid_labels = save['valid_labels']
      test_dataset = save['test_dataset']
      test_labels = save['test_labels']
      del save  # hint to help gc free up memory
      print('Training set', train_dataset.shape, train_labels.shape)
      print('Validation set', valid_dataset.shape, valid_labels.shape)
      print('Test set', test_dataset.shape, test_labels.shape)
    Training set (200000, 28, 28) (200000,)
    Validation set (10000, 28, 28) (10000,)
    Test set (10000, 28, 28) (10000,)

    3. 调整数据格式以便后续训练

    image_size = 28
    num_labels = 10
    
    def reformat(dataset, labels):
      dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32)
      # Map 0 to [1.0, 0.0, 0.0 ...], 1 to [0.0, 1.0, 0.0 ...]
      labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
      return dataset, labels
    train_dataset, train_labels = reformat(train_dataset, train_labels)
    valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
    test_dataset, test_labels = reformat(test_dataset, test_labels)
    print('Training set', train_dataset.shape, train_labels.shape)
    print('Validation set', valid_dataset.shape, valid_labels.shape)
    print('Test set', test_dataset.shape, test_labels.shape)
    Training set (200000, 784) (200000, 10)
    Validation set (10000, 784) (10000, 10)
    Test set (10000, 784) (10000, 10)

    4. 定义神经网络

    # With gradient descent training, even this much data is prohibitive.
    # Subset the training data for faster turnaround.
    train_subset = 10000
    
    graph = tf.Graph()
    with graph.as_default():
    
      # Input data.
      # Load the training, validation and test data into constants that are
      # attached to the graph.
      tf_train_dataset = tf.constant(train_dataset[:train_subset, :])
      tf_train_labels = tf.constant(train_labels[:train_subset])
      tf_valid_dataset = tf.constant(valid_dataset)
      tf_test_dataset = tf.constant(test_dataset)
      
      # Variables.
      # These are the parameters that we are going to be training. The weight
      # matrix will be initialized using random values following a (truncated)
      # normal distribution. The biases get initialized to zero.
      weights = tf.Variable(
        tf.truncated_normal([image_size * image_size, num_labels]))
      biases = tf.Variable(tf.zeros([num_labels]))
      
      # Training computation.
      # We multiply the inputs with the weight matrix, and add biases. We compute
      # the softmax and cross-entropy (it's one operation in TensorFlow, because
      # it's very common, and it can be optimized). We take the average of this
      # cross-entropy across all training examples: that's our loss.
      logits = tf.matmul(tf_train_dataset, weights) + biases
      loss = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
      
      # Optimizer.
      # We are going to find the minimum of this loss using gradient descent.
      optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
      
      # Predictions for the training, validation, and test data.
      # These are not part of training, but merely here so that we can report
      # accuracy figures as we train.
      train_prediction = tf.nn.softmax(logits)
      valid_prediction = tf.nn.softmax(
        tf.matmul(tf_valid_dataset, weights) + biases)
      test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases)

    5. 使用梯度下降(GD)训练神经网络

    num_steps = 801
    
    def accuracy(predictions, labels):
      return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
              / predictions.shape[0])
    
    with tf.Session(graph=graph) as session:
      # This is a one-time operation which ensures the parameters get initialized as
      # we described in the graph: random weights for the matrix, zeros for the
      # biases. 
      tf.global_variables_initializer().run()
      print('Initialized')
      for step in range(num_steps):
        # Run the computations. We tell .run() that we want to run the optimizer,
        # and get the loss value and the training predictions returned as numpy
        # arrays.
        _, l, predictions = session.run([optimizer, loss, train_prediction])
        if (step % 100 == 0):
          print('Loss at step %d: %f' % (step, l))
          print('Training accuracy: %.1f%%' % accuracy(
            predictions, train_labels[:train_subset, :]))
          # Calling .eval() on valid_prediction is basically like calling run(), but
          # just to get that one numpy array. Note that it recomputes all its graph
          # dependencies.
          print('Validation accuracy: %.1f%%' % accuracy(
            valid_prediction.eval(), valid_labels))
      print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
    Initialized
    Loss at step 0: 16.516306
    Training accuracy: 11.4%
    Validation accuracy: 11.7%
    Loss at step 100: 2.269041
    Training accuracy: 71.8%
    Validation accuracy: 70.2%
    Loss at step 200: 1.816886
    Training accuracy: 74.8%
    Validation accuracy: 72.6%
    Loss at step 300: 1.574824
    Training accuracy: 76.0%
    Validation accuracy: 73.6%
    Loss at step 400: 1.415523
    Training accuracy: 77.1%
    Validation accuracy: 73.9%
    Loss at step 500: 1.299691
    Training accuracy: 78.0%
    Validation accuracy: 74.4%
    Loss at step 600: 1.209450
    Training accuracy: 78.6%
    Validation accuracy: 74.6%
    Loss at step 700: 1.135888
    Training accuracy: 79.0%
    Validation accuracy: 74.9%
    Loss at step 800: 1.074228
    Training accuracy: 79.5%
    Validation accuracy: 75.0%
    Test accuracy: 82.3%

    6. 使用随机梯度下降(SGD)算法

    batch_size = 128
    
    graph = tf.Graph()
    with graph.as_default():
    
      # Input data. For the training data, we use a placeholder that will be fed
      # at run time with a training minibatch.
      tf_train_dataset = tf.placeholder(tf.float32,
                                        shape=(batch_size, image_size * image_size))
      tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
      tf_valid_dataset = tf.constant(valid_dataset)
      tf_test_dataset = tf.constant(test_dataset)
      
      # Variables.
      weights = tf.Variable(
        tf.truncated_normal([image_size * image_size, num_labels]))
      biases = tf.Variable(tf.zeros([num_labels]))
      
      # Training computation.
      logits = tf.matmul(tf_train_dataset, weights) + biases
      loss = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
      
      # Optimizer.
      optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
      
      # Predictions for the training, validation, and test data.
      train_prediction = tf.nn.softmax(logits)
      valid_prediction = tf.nn.softmax(
        tf.matmul(tf_valid_dataset, weights) + biases)
      test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases)
    
    num_steps = 3001
    
    with tf.Session(graph=graph) as session:
      tf.global_variables_initializer().run()
      print("Initialized")
      for step in range(num_steps):
        # Pick an offset within the training data, which has been randomized.
        # Note: we could use better randomization across epochs.
        offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
        # Generate a minibatch.
        batch_data = train_dataset[offset:(offset + batch_size), :]
        batch_labels = train_labels[offset:(offset + batch_size), :]
        # Prepare a dictionary telling the session where to feed the minibatch.
        # The key of the dictionary is the placeholder node of the graph to be fed,
        # and the value is the numpy array to feed to it.
        feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
        _, l, predictions = session.run(
          [optimizer, loss, train_prediction], feed_dict=feed_dict)
        if (step % 500 == 0):
          print("Minibatch loss at step %d: %f" % (step, l))
          print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
          print("Validation accuracy: %.1f%%" % accuracy(
            valid_prediction.eval(), valid_labels))
      print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))
    Initialized
    Minibatch loss at step 0: 18.121506
    Minibatch accuracy: 11.7%
    Validation accuracy: 15.0%
    Minibatch loss at step 500: 1.192153
    Minibatch accuracy: 80.5%
    Validation accuracy: 76.1%
    Minibatch loss at step 1000: 1.309419
    Minibatch accuracy: 75.8%
    Validation accuracy: 76.8%
    Minibatch loss at step 1500: 0.739157
    Minibatch accuracy: 83.6%
    Validation accuracy: 77.3%
    Minibatch loss at step 2000: 0.854160
    Minibatch accuracy: 85.2%
    Validation accuracy: 77.5%
    Minibatch loss at step 2500: 1.045702
    Minibatch accuracy: 76.6%
    Validation accuracy: 78.8%
    Minibatch loss at step 3000: 0.940078
    Minibatch accuracy: 79.7%
    Validation accuracy: 78.8%
    Test accuracy: 85.8%


    7. 使用ReLUs激活函数

    batch_size = 128
    hidden_layer_size = 1024
    
    graph = tf.Graph()
    with graph.as_default():
    
        # Input data. For the training data, we use a placeholder that will be fed
        # at run time with a training minibatch.
        tf_train_dataset = tf.placeholder(tf.float32,
                                        shape=(batch_size, image_size * image_size))
        tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
        tf_valid_dataset = tf.constant(valid_dataset)
        tf_test_dataset = tf.constant(test_dataset)
    
        # Variables.
        
        # Hidden layer (RELU magic)
        
        weights_hidden = tf.Variable(
            tf.truncated_normal([image_size * image_size, hidden_layer_size]))
        biases_hidden = tf.Variable(tf.zeros([hidden_layer_size]))
        hidden = tf.nn.relu(tf.matmul(tf_train_dataset, weights_hidden) + biases_hidden)
    
        # Output layer
    
        weights_output = tf.Variable(
            tf.truncated_normal([hidden_layer_size, num_labels]))
        biases_output = tf.Variable(tf.zeros([num_labels]))
        
        # Training computation.
        
        logits = tf.matmul(hidden, weights_output) + biases_output
        
        loss = tf.reduce_mean(
            tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
      
        # Optimizer.
    
        optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
      
        # Predictions for the training, validation, and test data.
    
        # Creation of hidden layer of RELU for the validation and testing process
        
        
        train_prediction = tf.nn.softmax(logits)
        
        hidden_validation = tf.nn.relu(tf.matmul(tf_valid_dataset, weights_hidden) + biases_hidden)
        valid_prediction = tf.nn.softmax(
        tf.matmul(hidden_validation, weights_output) + biases_output)
        
        hidden_prediction = tf.nn.relu(tf.matmul(tf_test_dataset, weights_hidden) + biases_hidden)
        test_prediction = tf.nn.softmax(tf.matmul(hidden_prediction, weights_output) + biases_output)
    
    num_steps = 3001
    
    def accuracy(predictions, labels):
      return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
              / predictions.shape[0])
    
    with tf.Session(graph=graph) as session:
      tf.initialize_all_variables().run()
      print("Initialized")
      for step in range(num_steps):
        # Pick an offset within the training data, which has been randomized.
        # Note: we could use better randomization across epochs.
        offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
        # Generate a minibatch.
        batch_data = train_dataset[offset:(offset + batch_size), :]
        batch_labels = train_labels[offset:(offset + batch_size), :]
        # Prepare a dictionary telling the session where to feed the minibatch.
        # The key of the dictionary is the placeholder node of the graph to be fed,
        # and the value is the numpy array to feed to it.
        feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
        _, l, predictions = session.run(
          [optimizer, loss, train_prediction], feed_dict=feed_dict)
        if (step % 500 == 0):
          print("Minibatch loss at step %d: %f" % (step, l))
          print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
          print("Validation accuracy: %.1f%%" % accuracy(
            valid_prediction.eval(), valid_labels))
      print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))
    Initialized
    Minibatch loss at step 0: 282.291931
    Minibatch accuracy: 14.1%
    Validation accuracy: 32.1%
    Minibatch loss at step 500: 18.090569
    Minibatch accuracy: 82.0%
    Validation accuracy: 79.7%
    Minibatch loss at step 1000: 15.504422
    Minibatch accuracy: 75.0%
    Validation accuracy: 80.8%
    Minibatch loss at step 1500: 5.314545
    Minibatch accuracy: 87.5%
    Validation accuracy: 80.6%
    Minibatch loss at step 2000: 3.442260
    Minibatch accuracy: 86.7%
    Validation accuracy: 81.5%
    Minibatch loss at step 2500: 2.226066
    Minibatch accuracy: 83.6%
    Validation accuracy: 82.6%
    Minibatch loss at step 3000: 2.228517
    Minibatch accuracy: 83.6%
    Validation accuracy: 82.5%
    Test accuracy: 89.6%

    8. 正则化

    import math
    batch_size = 128
    hidden_layer_size = 1024 # Doubled because half of the results are discarded
    regularization_beta = 5e-4
    
    graph = tf.Graph()
    with graph.as_default():
    
        # Input data. For the training data, we use a placeholder that will be fed
        # at run time with a training minibatch.
        tf_train_dataset = tf.placeholder(tf.float32,
                                        shape=(batch_size, image_size * image_size))
        tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
        tf_valid_dataset = tf.constant(valid_dataset)
        tf_test_dataset = tf.constant(test_dataset)
    
        # Variables.
        
        # Hidden layer (RELU magic)
        
        weights_hidden_1 = tf.Variable(
            tf.truncated_normal([image_size * image_size, hidden_layer_size], 
                               stddev=1 / math.sqrt(float(image_size * image_size))))
        biases_hidden_1 = tf.Variable(tf.zeros([hidden_layer_size]))
        hidden_1 = tf.nn.relu(tf.matmul(tf_train_dataset, weights_hidden_1) + biases_hidden_1)
    
        weights_hidden_2 = tf.Variable(tf.truncated_normal([hidden_layer_size, hidden_layer_size],
                                                          stddev=1 / math.sqrt(float(image_size * image_size))))
        biases_hidden_2 = tf.Variable(tf.zeros([hidden_layer_size]))
        hidden_2 = tf.nn.relu(tf.matmul(hidden_1, weights_hidden_2) + biases_hidden_2)
        
        # Output layer
    
        weights_output = tf.Variable(
            tf.truncated_normal([hidden_layer_size, num_labels],
                               stddev=1 / math.sqrt(float(image_size * image_size))))
        biases_output = tf.Variable(tf.zeros([num_labels]))
        
        # Training computation.
        
        logits = tf.matmul(hidden_2, weights_output) + biases_output
        
        loss = tf.reduce_mean(
            tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
      
        # L2 regularization on hidden and output weights and biases
        
        regularizers = (tf.nn.l2_loss(weights_hidden_1) + tf.nn.l2_loss(biases_hidden_1) + 
                        tf.nn.l2_loss(weights_hidden_2) + tf.nn.l2_loss(biases_hidden_2) +
                        tf.nn.l2_loss(weights_output) + tf.nn.l2_loss(biases_output))
    
        loss = loss + regularization_beta * regularizers
        
        # Optimizer.
    
        optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
      
        # Predictions for the training, validation, and test data.
    
        # Creation of hidden layer of RELU for the validation and testing process
        
        
        train_prediction = tf.nn.softmax(logits)
        
        hidden_validation_1 = tf.nn.relu(tf.matmul(tf_valid_dataset, weights_hidden_1) + biases_hidden_1)
        hidden_validation_2 = tf.nn.relu(tf.matmul(hidden_validation_1, weights_hidden_2) + biases_hidden_2)
        valid_prediction = tf.nn.softmax(
        tf.matmul(hidden_validation_2, weights_output) + biases_output)
        
        hidden_prediction_1 = tf.nn.relu(tf.matmul(tf_test_dataset, weights_hidden_1) + biases_hidden_1)
        hidden_prediction_2 = tf.nn.relu(tf.matmul(hidden_prediction_1, weights_hidden_2) + biases_hidden_2)
        test_prediction = tf.nn.softmax(tf.matmul(hidden_prediction_2, weights_output) + biases_output)
    
    num_steps = 3001
    
    def accuracy(predictions, labels):
      return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
              / predictions.shape[0])
    
    with tf.Session(graph=graph) as session:
      tf.initialize_all_variables().run()
      print("Initialized")
      for step in range(num_steps):
        # Pick an offset within the training data, which has been randomized.
        # Note: we could use better randomization across epochs.
        offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
        # Generate a minibatch.
        batch_data = train_dataset[offset:(offset + batch_size), :]
        batch_labels = train_labels[offset:(offset + batch_size), :]
        # Prepare a dictionary telling the session where to feed the minibatch.
        # The key of the dictionary is the placeholder node of the graph to be fed,
        # and the value is the numpy array to feed to it.
        feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
        _, l, predictions = session.run(
          [optimizer, loss, train_prediction], feed_dict=feed_dict)
        if (step % 500 == 0):
          print("Minibatch loss at step %d: %f" % (step, l))
          print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
          print("Validation accuracy: %.1f%%" % accuracy(
            valid_prediction.eval(), valid_labels))
      print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))
    Initialized
    Minibatch loss at step 0: 2.769384
    Minibatch accuracy: 8.6%
    Validation accuracy: 34.8%
    Minibatch loss at step 500: 0.735681
    Minibatch accuracy: 89.1%
    Validation accuracy: 86.2%
    Minibatch loss at step 1000: 0.791112
    Minibatch accuracy: 85.9%
    Validation accuracy: 86.9%
    Minibatch loss at step 1500: 0.523572
    Minibatch accuracy: 93.0%
    Validation accuracy: 88.1%
    Minibatch loss at step 2000: 0.487140
    Minibatch accuracy: 95.3%
    Validation accuracy: 88.5%
    Minibatch loss at step 2500: 0.529468
    Minibatch accuracy: 89.8%
    Validation accuracy: 88.4%
    Minibatch loss at step 3000: 0.531258
    Minibatch accuracy: 86.7%
    Validation accuracy: 88.9%
    Test accuracy: 94.7%

    9. Dropout

    import math
    batch_size = 128
    hidden_layer_size = 2048 # Doubled because half of the results are discarded
    regularization_beta = 5e-4
    
    graph = tf.Graph()
    with graph.as_default():
    
        # Input data. For the training data, we use a placeholder that will be fed
        # at run time with a training minibatch.
        tf_train_dataset = tf.placeholder(tf.float32,
                                        shape=(batch_size, image_size * image_size))
        tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
        tf_valid_dataset = tf.constant(valid_dataset)
        tf_test_dataset = tf.constant(test_dataset)
    
        # Variables.
        
        # Hidden layer (RELU magic)
        
        weights_hidden_1 = tf.Variable(
            tf.truncated_normal([image_size * image_size, hidden_layer_size], 
                               stddev=1 / math.sqrt(float(image_size * image_size))))
        biases_hidden_1 = tf.Variable(tf.zeros([hidden_layer_size]))
        hidden_1 = tf.nn.relu(tf.matmul(tf_train_dataset, weights_hidden_1) + biases_hidden_1)
    
        weights_hidden_2 = tf.Variable(tf.truncated_normal([hidden_layer_size, hidden_layer_size],
                                                          stddev=1 / math.sqrt(float(image_size * image_size))))
        biases_hidden_2 = tf.Variable(tf.zeros([hidden_layer_size]))
        hidden_2 = tf.nn.relu(tf.matmul(tf.nn.dropout(hidden_1, 0.5), weights_hidden_2) + biases_hidden_2)
        
        # Output layer
    
        weights_output = tf.Variable(
            tf.truncated_normal([hidden_layer_size, num_labels],
                               stddev=1 / math.sqrt(float(image_size * image_size))))
        biases_output = tf.Variable(tf.zeros([num_labels]))
        
        # Training computation.
        
        logits = tf.matmul(tf.nn.dropout(hidden_2, 0.5), weights_output) + biases_output
        
        loss = tf.reduce_mean(
            tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
      
        # L2 regularization on hidden and output weights and biases
        
        regularizers = (tf.nn.l2_loss(weights_hidden_1) + tf.nn.l2_loss(biases_hidden_1) + 
                        tf.nn.l2_loss(weights_hidden_2) + tf.nn.l2_loss(biases_hidden_2) +
                        tf.nn.l2_loss(weights_output) + tf.nn.l2_loss(biases_output))
    
        loss = loss + regularization_beta * regularizers
        
        # Optimizer.
    
        optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
      
        # Predictions for the training, validation, and test data.
    
        # Creation of hidden layer of RELU for the validation and testing process
        
        
        train_prediction = tf.nn.softmax(logits)
        
        hidden_validation_1 = tf.nn.relu(tf.matmul(tf_valid_dataset, weights_hidden_1) + biases_hidden_1)
        hidden_validation_2 = tf.nn.relu(tf.matmul(hidden_validation_1, weights_hidden_2) + biases_hidden_2)
        valid_prediction = tf.nn.softmax(
        tf.matmul(hidden_validation_2, weights_output) + biases_output)
        
        hidden_prediction_1 = tf.nn.relu(tf.matmul(tf_test_dataset, weights_hidden_1) + biases_hidden_1)
        hidden_prediction_2 = tf.nn.relu(tf.matmul(hidden_prediction_1, weights_hidden_2) + biases_hidden_2)
        test_prediction = tf.nn.softmax(tf.matmul(hidden_prediction_2, weights_output) + biases_output)
    
    num_steps = 5001
    
    def accuracy(predictions, labels):
      return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
              / predictions.shape[0])
    
    with tf.Session(graph=graph) as session:
      tf.initialize_all_variables().run()
      print("Initialized")
      for step in range(num_steps):
        # Pick an offset within the training data, which has been randomized.
        # Note: we could use better randomization across epochs.
        offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
        # Generate a minibatch.
        batch_data = train_dataset[offset:(offset + batch_size), :]
        batch_labels = train_labels[offset:(offset + batch_size), :]
        # Prepare a dictionary telling the session where to feed the minibatch.
        # The key of the dictionary is the placeholder node of the graph to be fed,
        # and the value is the numpy array to feed to it.
        feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
        _, l, predictions = session.run(
          [optimizer, loss, train_prediction], feed_dict=feed_dict)
        if (step % 500 == 0):
          print("Minibatch loss at step %d: %f" % (step, l))
          print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
          print("Validation accuracy: %.1f%%" % accuracy(
            valid_prediction.eval(), valid_labels))
      print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))
    WARNING:tensorflow:From <ipython-input-12-3684c7218154>:8: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
    Instructions for updating:
    Use `tf.global_variables_initializer` instead.
    Initialized
    Minibatch loss at step 0: 4.059163
    Minibatch accuracy: 7.8%
    Validation accuracy: 31.5%
    Minibatch loss at step 500: 1.626858
    Minibatch accuracy: 86.7%
    Validation accuracy: 84.8%
    Minibatch loss at step 1000: 1.492026
    Minibatch accuracy: 82.0%
    Validation accuracy: 85.8%
    Minibatch loss at step 1500: 1.139689
    Minibatch accuracy: 92.2%
    Validation accuracy: 87.1%
    Minibatch loss at step 2000: 0.970064
    Minibatch accuracy: 93.0%
    Validation accuracy: 87.1%
    Minibatch loss at step 2500: 0.963178
    Minibatch accuracy: 87.5%
    Validation accuracy: 87.6%
    Minibatch loss at step 3000: 0.870884
    Minibatch accuracy: 87.5%
    Validation accuracy: 87.6%
    Minibatch loss at step 3500: 0.898399
    Minibatch accuracy: 85.2%
    Validation accuracy: 87.7%
    Minibatch loss at step 4000: 0.737084
    Minibatch accuracy: 91.4%
    Validation accuracy: 88.0%
    Minibatch loss at step 4500: 0.646125
    Minibatch accuracy: 88.3%
    Validation accuracy: 87.7%
    Minibatch loss at step 5000: 0.685591
    Minibatch accuracy: 88.3%
    Validation accuracy: 88.6%
    Test accuracy: 94.4%

    最后总结一下各种算法的训练表现,可以看出使用正则化和Dropout后训练效果明显变好,最后趋近于95%的准确率了。

  • 相关阅读:
    「 HDU P3336 」 Count the string
    Luogu P4016 「 网络流 24 题 」负载平衡问题
    『 学习笔记 』网络最大流
    Luogu P4014 「 网络流 24 题 」分配问题
    Loj #6000.「 网络流 24 题 」搭配飞行员
    牛客练习赛25 C 再编号
    线段树--从入门到入土
    网络流学习--费用流
    网络流--最大流
    五校联考解题报告
  • 原文地址:https://www.cnblogs.com/wdsunny/p/6654539.html
Copyright © 2020-2023  润新知