• tensorflow的keras实现搭配dataset 之一


    tensorflow的keras实现搭配dataset,几种形式都工作!

    tensorflow,keras Sequential模式下:

    见代码:

    from tensorflow import keras as ks
    import tensorflow as tf
    
    # Generate dummy data
    import numpy as np
    x_train = np.random.random((1000, 20))
    y_train = ks.utils.to_categorical(np.random.randint(10, size=(1000, 1)), num_classes=10)
    x_test = np.random.random((100, 20))
    y_test = ks.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
    
    
    batch_size = 100
    steps_per_epoch = int(np.ceil(x_train.shape[0]/batch_size))
    
    train_ds = tf.data.Dataset.from_tensor_slices((x_train,y_train))
    train_ds = train_ds.batch(batch_size)   # batch 能给数据集增加批维度
    train_ds = train_ds.repeat()
    
    train_it = train_ds.make_one_shot_iterator()
    x_train_it, y_train_it = train_it.get_next()
    
    
    test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test))
    test_ds = test_ds.batch(batch_size)
    test_ds = test_ds.repeat()
    
    model = ks.models.Sequential()
    # Dense(64) is a fully-connected layer with 64 hidden units.
    # in the first layer, you must specify the expected input data shape:
    # here, 20-dimensional vectors.
    model.add(ks.layers.Dense(64, activation='relu', input_dim=20))
    model.add(ks.layers.Dropout(0.5))
    model.add(ks.layers.Dense(64, activation='relu'))
    model.add(ks.layers.Dropout(0.5))
    model.add(ks.layers.Dense(10, activation='softmax'))
    
    sgd = ks.optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
    model.compile(loss='categorical_crossentropy', optimizer=sgd,   metrics=['accuracy'])
    
    # passing the data to the model with the below to style, both work
    model.fit(x_train_it, y_train_it, epochs=20, steps_per_epoch=steps_per_epoch)
    print("(+("*20,'
    '*4)
    model.fit(train_ds, epochs=20, steps_per_epoch=steps_per_epoch)
    
    score = model.evaluate(test_ds, steps=128)
    print(score)
  • 相关阅读:
    正方形_自适应_移动端
    meta name="viewport" content="width=device-width,initial-scale=1.0"
    :before/:after与::before/::after的区别 和属性content:值
    布局:flex弹性布局_兼容性写法
    布局:文本多列布局 column-* :
    布局:网格布局
    clear
    布局:盒模型 box-sizing : border-box ;
    object-fit : cover; 对象(图片和视频对象)
    布局:flex弹性布局_实践02
  • 原文地址:https://www.cnblogs.com/wdmx/p/10256713.html
Copyright © 2020-2023  润新知