include "stdafx.h"
#include<iostream>
#include<vector>
#include<string>
#include<queue>
#include<stack>
#include<cstring>
#include<string.h>
#include<deque>
#include <forward_list>
#include<set>
#include<list>
using namespace std;
typedef struct
{
vector<int> vexs;//顶点表
vector<vector<int>> arcs;//边表
int vexnums, arcnums;
}AMGraph; //邻接矩阵表示一个图
class Solution {
public:
void CreateGraph(AMGraph &G)
{
int num = 0;
cout << "请输入顶点个数:";
cin >> num;
G.vexnums = num;
cout << "请输入边的个数:";
cin >> num;
G.arcnums = num;
//依次输入各个顶点
cout << "依次输入各个顶点:" << endl;
for (int i = 0; i < G.vexnums; ++i)
{
int ch;
cin >> ch;
G.vexs.push_back(ch);
}
for (int i = 0; i < G.vexnums; ++i)//初始化各个边
{
vector<int> vec;
vec.clear();
for (int j = 0; j < G.vexnums; ++j)
{
vec.push_back(0);
}
G.arcs.push_back(vec);
}
cout << "依次输入两个关联的顶点:" << endl;
for (int i = 0; i < G.arcnums; ++i)
{
int vex1;
int vex2;
cin >> vex1 >> vex2;
G.arcs[vex1][vex2] = 1;
G.arcs[vex2][vex1] = 1;//
cout << "一条边构建成功!" << endl;
}
GetGraph(G);
}
//为了试验方便,我们自己创建一个固定的图
void CreatAGraph(AMGraph &G)
{
//创建顶点
G.vexnums = 6;
G.arcnums = 6;
for (int i = 0; i < G.vexnums; ++i)
{
G.vexs.push_back(i);
}
for (int i = 0; i < G.vexnums; ++i)//初始化各个边
{
vector<int> vec;
vec.clear();
for (int j = 0; j < G.vexnums; ++j)
{
vec.push_back(0);
}
G.arcs.push_back(vec);
}
G.arcs[0][1] = 6;
G.arcs[1][0] = 6;
G.arcs[0][2] = 1;
G.arcs[2][0] = 1;
G.arcs[0][3] = 5;
G.arcs[3][0] = 5;
G.arcs[1][2] = 5;
G.arcs[2][1] = 5;
G.arcs[1][4] = 3;
G.arcs[4][1] = 3;
G.arcs[2][4] = 6;
G.arcs[4][2] = 6;
G.arcs[2][5] = 4;
G.arcs[5][2] = 4;
G.arcs[3][2] = 5;
G.arcs[3][2] = 5;
G.arcs[3][5] = 2;
G.arcs[5][3] = 2;
G.arcs[4][5] = 6;
G.arcs[5][4] = 6;
GetGraph(G);
}
vector<int> visited;//用来标注对应的节点是否被访问,如果被访问,则访问下一个节点
void DFSTraverse(AMGraph G)//深度优先遍历
{
visited.clear();
//初始化,假设每个节点都没有被访问
for (int i = 0; i < G.vexnums; ++i)
{
visited.push_back(0);//没访问的都设置为0,访问过的都设置为1
}
for (int v = 0; v < G.vexnums; ++v)
{
if (visited[v] == 0)//保证节点没有被访问
DFS(G, v);
}
cout << endl;
}
void DFS(AMGraph G, int v) //对i节点进行深度优先遍历
{
cout << "v_" << v << " ";
visited[v] = 1;
for (int i = 0; i < G.vexnums; ++i)
{
if (G.arcs[v][i] != 0 && visited[i] == 0)//存在边,且i节点没有访问过
DFS(G, i);
}
return;
}
void BFSTraverse(AMGraph G)//广度优先遍历
{
visited.clear();
for (int i = 0; i < G.vexnums; ++i)
{
visited.push_back(0);//没访问的都设置为0,访问过的都设置为1
}
for (int v = 0; v < G.vexnums; ++v)
{
if (visited[v] == 0 )
{
cout << "v_" << v << " ";//节点没有被访问
visited[v] = 1;
}
for (int i = 0; i < G.vexnums; ++i)
{
if (visited[i] == 0 && G.arcs[v][i] != 0)
{
cout << "v_" << i << " ";//节点没有被访问
visited[i] = 1;
}
}
}
cout << endl;
}
void BFS(AMGraph G, int v)
{
if (visited[v] == 0)
{
cout << "v_" << v << " ";//节点没有被访问
visited[v] = 1;
}
for (int i = 0; i < G.vexnums; ++i)
{
if (visited[i] == 0)
{
cout << "v_" << v << " ";//节点没有被访问
visited[v] = 1;
}
}
}
void GetGraph(AMGraph G)
{
cout << "顶点信息:" << endl;
for (int i = 0; i < G.vexnums; ++i)
{
cout << G.vexs[i] << " ";
}
cout << endl;
cout << "边的信息:" << endl;
for (int i = 0; i < G.vexnums; ++i)
{
for (int j = 0; j < G.vexnums; ++j)
{
cout << G.arcs[i][j] << " ";
}
cout << endl;
}
}
//用普利姆算法构建最小生成树,最小生成树存在返回T
vector<int>nodes;//存储已经存在在U集合里面的点,每次从剩下的节点选择离nodes集合里面距离最小的节点
vector<int>renodes;//存储剩余的节点
AMGraph MinSpanTree_Prim(AMGraph G)
{
AMGraph T;
T.vexnums = G.vexnums;
//初始化顶点
for (int i = 0; i < T.vexnums; ++i)
{
T.vexs.push_back(i);
}
//初始化边
for (int i = 0; i < T.vexnums; ++i)
{
renodes.push_back(i);//向renodes中插入节点
vector<int> vec;
for (int j = 0; j < T.vexnums; ++j)
{
// T.arcs[i][j] = 0; //初始化T
vec.push_back(0);
}
T.arcs.push_back(vec);
}
//从v_0开始选边
nodes.push_back(0);//第0个边给node节点
renodes.erase(renodes.begin()+0);
while (nodes.size()!=T.vexnums)
{
int minDistance = G.arcs[nodes[0]][renodes[0]];//记录最小距离
int minNode1 = nodes[0];
int minNode2 = renodes[0];//记录离最小距离的节点
int flag = 0;//renodes中要删除的节点
bool visist = false;
int i = 0, j = 0;
for ( i = 0; i < nodes.size(); ++i)//选择距离最小的边
{
for ( j = 0; j < renodes.size(); ++j)
{
//找到最小距离,且最小距离和原来节点不形成回路
//if (visist == false && minDistance==0 && G.arcs[nodes[i]][renodes[j]] != 0 ) //距离不等于0 //只执行一次,找到最短距离
if ( minDistance == 0 && G.arcs[nodes[i]][renodes[j]] != 0) //距离不等于0 //只执行一次,找到最短距离
{
minDistance = G.arcs[nodes[i]][renodes[j]];
minNode1 = nodes[i];
minNode2 = renodes[j];
flag = j;
// visist = true; //visit保证这条语句只访问一次
// cout << "flag:" << flag << endl;
}
if (G.arcs[nodes[i]][renodes[j]] != 0 && minDistance > G.arcs[nodes[i]][renodes[j]])
{
minDistance = G.arcs[nodes[i]][renodes[j]];
minNode1 = nodes[i];
minNode2 = renodes[j];
flag = j;
// cout << "flag:" << flag << endl;
}
}
// cout << "最短距离是:" << minDistance << endl;
}
T.arcs[minNode1][minNode2] = minDistance;
T.arcs[minNode2][minNode1] = minDistance;
T.arcnums++;
nodes.push_back(minNode2);
//cout << "flag:" << flag << endl;
cout << "nodes:" ;
print(nodes);
cout << endl;
renodes.erase(renodes.begin()+flag);
//cout << "renodes:";
//print(renodes);
//cout << endl;
//cout << endl;
//cout << "T.vexnums:" << T.vexnums;
//cout << "nodes.size():" << nodes.size();
}
return T;
}
void print(vector<int> vec)
{
for (int i = 0; i < vec.size(); ++i)
cout << vec[i] << " ";
}
//用克鲁斯算法构建最小生成树,最小生成树返回T
/*AMGraph MinSpanTree_Kruskal(AMGraph G)
{
}*/
};
int main()
{
Solution so;
AMGraph G;
//so.CreateGraph(G);
so.CreatAGraph(G);
cout << "G深度优先遍历:" << endl;
so.DFSTraverse(G);
cout << "G广度优先遍历:" << endl;
so.BFSTraverse(G);
//so.GetGraph(G);
AMGraph T;
T = so.MinSpanTree_Prim(G);
cout << "T深度优先遍历:" << endl;
so.DFSTraverse(T);
cout << "T的信息:" << endl;
so.GetGraph(T);
return 0;
}