• 自己用python写一个线性支持向量机linearSVM


    自己用python写一个线性支持向量机linearSVM

    https://blog.csdn.net/iteapoy/article/details/117814830转自此网址

    ❤️ 机器学习专栏收录该内容
    14 篇文章8 订阅

    前言:要修改linearSVM的代码,想在网上找一个能用的代码,结果要么调用sklearn库,要么都复制粘贴同一款代码,写得太复杂了,而且有bug,在bing国际版上搜到了一个没有用SMO和拉格朗日算子求解的linearSVM代码,复制过来Mark一下。

    原文地址(英文版):https://www.adeveloperdiary.com/data-science/machine-learning/support-vector-machines-for-beginners-linear-svm/

    完整代码:

    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn import preprocessing
    from sklearn.preprocessing import StandardScaler
     
     
    class LinearSVMUsingSoftMargin:
        def __init__(self, C=1.0):
            self._support_vectors = None
            self.C = C
            self.beta = None
            self.b = None
            self.X = None
            self.y = None
     
            # n is the number of data points
            self.n = 0
     
            # d is the number of dimensions
            self.d = 0
     
        def __decision_function(self, X):
            return X.dot(self.beta) + self.b
     
        def __cost(self, margin):
            return (1 / 2) * self.beta.dot(self.beta) + self.C * np.sum(np.maximum(0, 1 - margin))
     
        def __margin(self, X, y):
            return y * self.__decision_function(X)
     
        def fit(self, X, y, lr=1e-3, epochs=500):
            # Initialize Beta and b
            self.n, self.d = X.shape
            self.beta = np.random.randn(self.d)
            self.b = 0
     
            # Required only for plotting
            self.X = X
            self.y = y
     
            loss_array = []
            for _ in range(epochs):
                margin = self.__margin(X, y)
                loss = self.__cost(margin)
                loss_array.append(loss)
     
                misclassified_pts_idx = np.where(margin < 1)[0]
                d_beta = self.beta - self.C * y[misclassified_pts_idx].dot(X[misclassified_pts_idx])
                self.beta = self.beta - lr * d_beta
     
                d_b = - self.C * np.sum(y[misclassified_pts_idx])
                self.b = self.b - lr * d_b
     
            self._support_vectors = np.where(self.__margin(X, y) <= 1)[0]
     
        def predict(self, X):
            return np.sign(self.__decision_function(X))
     
        def score(self, X, y):
            P = self.predict(X)
            return np.mean(y == P)
     
        def plot_decision_boundary(self):
            plt.scatter(self.X[:, 0], self.X[:, 1], c=self.y, s=50, cmap=plt.cm.Paired, alpha=.7)
            ax = plt.gca()
            xlim = ax.get_xlim()
            ylim = ax.get_ylim()
     
            # create grid to evaluate model
            xx = np.linspace(xlim[0], xlim[1], 30)
            yy = np.linspace(ylim[0], ylim[1], 30)
            YY, XX = np.meshgrid(yy, xx)
            xy = np.vstack([XX.ravel(), YY.ravel()]).T
            Z = self.__decision_function(xy).reshape(XX.shape)
     
            # plot decision boundary and margins
            ax.contour(XX, YY, Z, colors=['r', 'b', 'r'], levels=[-1, 0, 1], alpha=0.5,
                       linestyles=['--', '-', '--'], linewidths=[2.0, 2.0, 2.0])
     
            # highlight the support vectors
            ax.scatter(self.X[:, 0][self._support_vectors], self.X[:, 1][self._support_vectors], s=100,
                       linewidth=1, facecolors='none', edgecolors='k')
     
            plt.show()
     
     
    def load_data(cols):
        iris = sns.load_dataset("iris")
        iris = iris.tail(100)
     
        le = preprocessing.LabelEncoder()
        y = le.fit_transform(iris["species"])
     
        X = iris.drop(["species"], axis=1)
     
        if len(cols) > 0:
            X = X[cols]
     
        return X.values, y
     
     
    if __name__ == '__main__':
        # make sure the targets are (-1, +1)
        cols = ["petal_length", "petal_width"]
        X, y = load_data(cols)
     
        y[y == 0] = -1
     
        # scale the data
        scaler = StandardScaler()
        X = scaler.fit_transform(X)
        # now we'll use our custom implementation
        model = LinearSVMUsingSoftMargin(C=15.0)
     
        model.fit(X, y)
        print("train score:", model.score(X, y))
     
        model.plot_decision_boundary()
  • 相关阅读:
    centos安装python
    【剑指Offer学习】【所有面试题汇总】
    内连接,外链接(左连接、右连接、全连接),交叉连接
    数据库三范式
    聚集索引与非聚集索引
    B树和B+树的区别
    TCP建立连接三次握手和释放连接四次握手
    HTTP协议详解
    常见的HTTP状态码(HTTP Status Code)说明
    归并排序的思想及递归运行步骤详解
  • 原文地址:https://www.cnblogs.com/wcxia1985/p/15016521.html
Copyright © 2020-2023  润新知