• Proof for Floyd-Warshall's Shortest Path Derivation Algorithm Also Demonstrates the Hierarchical Path Construction Process


    (THIS BLOG WAS ORIGINALLY WRTITTEN IN CHINESE WITH LINK: http://www.cnblogs.com/waytofall/p/3732920.html)

     

    Foreword: Floyd-Warshall is a classical dynamical programming algorithm for deriving shortest paths between each pair of nodes on a graph. It has n iterations (n for the number of nodes). During each iteration k,  the shortest paths for each pair of nodes with intermediate nodes numbered no more than k are derived. Since inductively, we can assume that before iteration k, the shortest paths for each pair of nodes with intermediate nodes numbered no more than k-1 are derived, the way to derive the paths with intermediate nodes numbered no more than k can be derived as:

          

    In order to derive all the intermediate nodes on a shortest path, the algorithm maintains a predecessor matrix Π, with its element  πij denoting the node before j in the shortest path from i to j. The matrix is defined as follows:

          

         

    ​For more detailed specification, please refer to Introduction to Algorithms.

    My problem:  for two nodes i, j of graph, there is a maximal k, such that during the kth iteration, the shortest paths dynamically programmed by the algorithm was combined by shortest paths i ~ kk ~ j, whose intermediate nodes are numbered less than k. And for the shortest paths i ~ kk ~ j, we can also have such a iteration. Therefore, the path can be visualised as follows:

                       

    ​In the tree displayed above, each parent is separated by the "middle node" k, which is the maximal number of iteration that combines two paths. The shortest paths derived from the predecessor matrix are easily proved correct, but the problem is, whether the paths derived by such methods are identical to the paths displayed by the figure above? In another word, whether the paths derived demonstrate the hierarchical path construction process of Floyd-Warshall? The answer is yes. And I'm gonna prove it.


    Lemma 1: If, during the kth iteration, the shortest path from i to j was derived by combining paths i ~ k, k ~ j, and we have m = πij(kand m ≠ k; then the shortest path constructed by the algorithm from i to m also are derived from combining i ~ k,  k ~ m.

    Proof: Since πkj(k-1) = πij(k)= m, that is, in the path from k to j with intermediate nodes numbered no more than k, the predecessor of j is m, so we have:

                                   dkj(k-1) = dkm(k-1) wmj 

    wmj is the weight for edge(m, j).

    Since there is an edge from m to j, from the Triangle Inequality, we have:

                                    dij(k-1) ≤ dim(k-1) wmj                                                                          (1)

    which is:

                                    dim(k-1)  ≥  dij(k-1) wmj                                                                         (2)

    From the condition of the lemma, we have:

                                    dij(k-1) dik(k-1) dkj(k-1)                                                                      (3)

    Subtract wmj from both sides, we have:

                                    dij(k-1)  - wmj  dik(k-1) dkj(k-1)  wmj =  dik(k-1) dkm(k-1)                 (4)

    Which can be transformed to:

                                    dij(k-1)  - wmj  dik(k-1) dkm(k-1)                                                          (5)


    Combining (2) and (5), we have:

                                    dim(k-1)dik(k-1) dkm(k-1)                                                                   (6)

    Done.

    Then we are going to prove our conclusion.

    Proof:  We use mathematical induction. Before the first iteration, the paths derived from the Π(0) matrix certainly meet the property. 

    Then, supposing that path derived from Π(k-1) meet the property, then in the kth iteration:

    (1). If the shortest path from i to j does not contain node k, we have  dij(k) = dij(k-1),πij(k) = πij(k-1) = m. Applying the shortest path construction function, we can have a nodes sequence:

             πij(k) = m  

             πim(k) = n

             ...

             πio(k) = p

             πip(k) = i

    For any  πix(k) (x belongs to {m,n,...,p,i}), πix(k) ix(k-1). So we have:

             πij(k) = πij(k-1) = m

             πim(k) = πim(k-1) = n

             ...

             πio(k) = πio(k-1) = p

             πip(k) = πip(k-1) = i

    That is, the shortest paths derived from Π(k) is identical to the shortest paths derived from Π(k-1). Since Π(k) has the propery, the path also has the property.

    (2). If the shortest path from i to j contains node k, we have:

               dij(k) = dik(k-1) dkj(k-1),πij(k) = πkj(k-1)= m

    and:

             πij(k) = πkj(k-1) = m

             πim(k) = πkm(k-1) = n

             ...

             πio(k) = πko(k-1) = p

             πip(k) = πkp(k-1) = k

    That is, we enumerate the predecessor of j until we get to k. Now, all the intermediate nodes of the path from i to k are identical to the path derived from Π(k-1), so the subpath meet the property. The same for path from k to j, so the shortest paths from i to j derived from Π(k) meet the property.

    Done.

  • 相关阅读:
    redisLock redis分布式锁
    Mabitis中的#与$符号区别及用法介绍
    pring Scheduler定时器原理分析
    SpringBoot几种定时任务
    线程池的理解
    JVM的方法区和永久带是什么关系
    JVM老年代和新生代的比例
    IO 与 NIO
    对mysql乐观锁、悲观锁、共享锁、排它锁、行锁、表锁概念的理解
    TCP滑动窗口控制流量的原理
  • 原文地址:https://www.cnblogs.com/waytofall/p/4919734.html
Copyright © 2020-2023  润新知