Memory limit 262144 kB
OS Windows
Source 2019 Multi-University Training Contest 1
感想
火车上AK这场比赛的dls,在两天后直播讲题,讲到这题的时候,说得好轻松啊,一个简单的dp就完事了,然后说了一下dp的参数,然后就到下一题了……
解题思路
扔几个链接,融会贯通一下
- https://blog.csdn.net/m0_43448982/article/details/96988882
- https://blog.csdn.net/Ratina/article/details/97237438
- https://www.cnblogs.com/zhuyou/p/11273721.html
大概就是设(dp[x][y][z][i])代表如下的意思:从前向后扫,扫到目前第(i)个格子时,4种颜色最后出现的位置分别为(x、y、z、i)时的方案数,其中(xleqslant yleqslant zleqslant i),在(x、y、z、i)为0时取等号,表示目前有一些颜色还没有出现,即最后一次出现的位置为0。
颜色种类不重要,因为计算过程已经把不同颜色的组合方式计算进去了,重要的是颜色的。然后染这一格((i))的时候的方案数是从染上一个格子((i-1))的方案数转移过来的。
扩展当前这一个格子的时候,我们可以取之前出现过的4种颜色中的一种。举个例子,假设我们取的是之前最后一次出现在(x)的那个颜色,那么会发生这样的转移——(dp[y][z][i-1][i]+=dp[x][y][z][i-1])(想想dp数组四个参数的含义和大小关系,现在这个状态的数量增加了上一个状态的数量那么多种),取的是最后一次出现在(y)的那个颜色的话,发生的转移就是——(dp[x][z][i-1][i]+=dp[x][y][z][i-1]),同样的道理还有(dp[x][y][i-1][i]+=dp[x][y][z][i-1])和(dp[x][y][i-1][i]+=dp[x][y][z][i])。对于判断条件,当我们跑完第(i)个格子的时候,就检查以(i)为右端点的所有条件,对于一个条件——([l,r])之间有(x)种颜色,我们可以看那些状态是否满足条件,看每个颜色最后一次出现的位置在区间内还是区间外,然后根据这个统计区间内颜色数量,不满足条件就把它们清零,防止转移到下一个(i)。
统计的时候就统计所有(i=n)的格子,把数量加起来就好。但是这种方法会爆空间,注意到(i)那一维可以滚动,所以把(i)那一维滚动起来。另外注意取模 993244853 998244353。
源代码
#include<vector>
#include<cstdio>
#include<cstring>
#include<algorithm>
const int mod=998244353;
int T;
int n,m;
long long dp[105][105][105][2];
//x<y<z<i
struct Condition{
int l,x;
};
std::vector<Condition> c[105];
int main()
{
//freopen("test.in","r",stdin);
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(int i=0;i<105;i++) c[i].clear();
for(int i=1,l,r,x;i<=m;i++)
{
scanf("%d%d%d",&l,&r,&x);
c[r].push_back({l,x});
}
dp[0][0][0][0]=1;
int cur=1;//i&1
int last=0;//!(i&1)
for(int i=1;i<=n;i++)
{
for(int z=0;z<=i;z++)
{
for(int y=0;y<=z;y++)
{
for(int x=0;x<=y;x++)
{
dp[x][y][z][cur]=0;//清零
}
}
}
for(int z=0;z<i;z++)
{
for(int y=0;y<=z;y++)
{
for(int x=0;x<=y;x++)//转移
{
long long temp=dp[x][y][z][last];
dp[x][y][z][cur]+=temp;
dp[y][z][i-1][cur]+=temp;
dp[x][z][i-1][cur]+=temp;
dp[x][y][i-1][cur]+=temp;
dp[x][y][z][cur]%=mod;
dp[y][z][i-1][cur]%=mod;
dp[x][z][i-1][cur]%=mod;
dp[x][y][i-1][cur]%=mod;
}
}
}
for(unsigned int cc=0;cc<c[i].size();cc++)//判断
{
for(int z=0;z<i;z++)
for(int y=0;y<=z;y++)
for(int x=0;x<=y;x++)
{
int temp=1+(x>=c[i][cc].l?1:0)+(y>=c[i][cc].l?1:0)+(z>=c[i][cc].l?1:0);//统计区间内颜色数量
if(temp!=c[i][cc].x) dp[x][y][z][cur]=0;
}
}
std::swap(cur,last);
}
long long ans=0;
for(int z=0;z<n;z++)//统计答案
{
for(int y=0;y<=z;y++)
{
for(int x=0;x<=y;x++)
{
ans+=dp[x][y][z][last];
ans%=mod;
}
}
}
printf("%lld
",ans);
}
return 0;
}