• Bzoj1486/洛谷P3199 最小圈(0/1分数规划+spfa)/(动态规划+结论)


    题面

    Bzoj

    洛谷

    题解(0/1分数规划+spfa)

    考虑$0/1$分数规划,设当前枚举到的答案为$ans$

    则我们要使(其中$forall b_i=1$)
    $$
    frac{sum_{i=1}ta[e_i]}{sum_{i=1}tb[v_i]}< ans
    hereforesum a[e_i]-ans*b[v_i]=sum a[e_i]-ans<0
    $$
    则问题就变成了判断图内是否存在一个负环...

    时间复杂度:$O(nmlog)$

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using std::min; using std::max;
    using std::swap; using std::sort;
    typedef long long ll;
    
    template<typename T>
    void read(T &x) {
        int flag = 1; x = 0; char ch = getchar();
        while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
        while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
    }
    
    const int N = 3e3 + 10, M = 1e4 + 10;
    const double eps = 1e-9;
    int n, m, from[N], cnt, to[M], nxt[M]; double dis[M];
    inline void addEdge(int u, int v, double w) {
        to[++cnt] = v, nxt[cnt] = from[u], dis[cnt] = w, from[u] = cnt;
    }
    double p[N]; bool vis[N], flag;
    
    void spfa(int u, double k) {
    	vis[u] = 1;
    	for(int i = from[u]; i; i = nxt[i]) {
    		if(flag) return ;
    		int v = to[i]; double w = dis[i] - k;
    		if(p[v] > p[u] + w) {
    			if(vis[v]) return (void)(flag = 1);
    			p[v] = p[u] + w, spfa(v, k);
    		}
    	}
    	vis[u] = 0;
    }
    
    int main () {
    	read(n), read(m); int u, v; double w;
    	for(int i = 1; i <= m; ++i)
    		read(u), read(v), scanf("%lf", &w), addEdge(u, v, w);
    	double l = -1e7, r = 1e7, ret;
    	while(r - l > eps) {
    		double mid = l + (r - l) / 2.; 
    		memset(p, 0, sizeof p), memset(vis, 0, sizeof vis);
    		flag = 0;
    		for(int i = 1; i <= n; ++i) {
    			spfa(i, mid); if(flag) break;
    		}
    		if(flag) ret = mid, r = mid - eps;
    		else l = mid + eps;
    	} printf("%.8lf
    ", ret);
    	return 0;
    } 
    

    题解(动态规划+结论)

    显然,如果真的将渐进复杂度卡满的话(甚至卡到指数级),你是过不去的,这里讲一下这题真正意义上的正解(貌似出这道题的本意就是考察$0/1$分数规划)。

    为什么说是结论呢?根据Karp在1977年的论文,他讲述了一种$O(nm)$的算法,用来求有向强连通图中最小平均权值回路,也就是这题的模型。具体可以去看$_rqy$的博客

    我们新建一个节点,从它到每个点连一条权值任意的边(比如都是$0$),再令$F_j(i)$表示从新建的点到$i$点恰好经过$j$条边的最短路,那么有
    $$
    ans=min_{1leq ileq n, F_{n+1}(i) eqinfty}max_{j=1}^{n}left[frac{F_{n+1}(v)-F_k(v)}{n+1-k} ight]
    $$
    求$f$可以用动态规划来求,之后就是套公式了。

    但是啊,在$Bzoj$上是过不去的,空间只有$64MB$,可以用滚动数组进行优化。

  • 相关阅读:
    想要学习编程?不如来玩玩这15款游戏!总有一款适合你!
    C++ 高级教程:C++ 文件和流
    4个小众Chrome插件,最后一个互联网人必备!
    程序员必读,熬夜是如何摧残你的身体的!
    教育部将编程教育纳入中小学相关课程,编程正成为全球语言!
    Windows 比 Linux 好?我有 13 个反对理由
    程序员的十八般兵器库,捋一捋这近几年程序员们日常工作中常用的开源工具
    how to train yolov4 on custom dataset
    How to Perform Object Detection With YOLOv3 in Keras
    YOLOv4 / Scaled-YOLOv4 / YOLO
  • 原文地址:https://www.cnblogs.com/water-mi/p/10256255.html
Copyright © 2020-2023  润新知