• (次短路) poj 3255


    Roadblocks
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 8706   Accepted: 3145

    Description

    Bessie has moved to a small farm and sometimes enjoys returning to visit one of her best friends. She does not want to get to her old home too quickly, because she likes the scenery along the way. She has decided to take the second-shortest rather than the shortest path. She knows there must be some second-shortest path.

    The countryside consists of R (1 ≤ R ≤ 100,000) bidirectional roads, each linking two of the N (1 ≤ N ≤ 5000) intersections, conveniently numbered 1..N. Bessie starts at intersection 1, and her friend (the destination) is at intersection N.

    The second-shortest path may share roads with any of the shortest paths, and it may backtrack i.e., use the same road or intersection more than once. The second-shortest path is the shortest path whose length is longer than the shortest path(s) (i.e., if two or more shortest paths exist, the second-shortest path is the one whose length is longer than those but no longer than any other path).

    Input

    Line 1: Two space-separated integers: N and R 
    Lines 2..R+1: Each line contains three space-separated integers: AB, and D that describe a road that connects intersections A and B and has length D (1 ≤ D ≤ 5000)

    Output

    Line 1: The length of the second shortest path between node 1 and node N

    Sample Input

    4 4
    1 2 100
    2 4 200
    2 3 250
    3 4 100

    Sample Output

    450

    Hint

    Two routes: 1 -> 2 -> 4 (length 100+200=300) and 1 -> 2 -> 3 -> 4 (length 100+250+100=450)
     
    题意:
     
    求次短路。。
     
    思路
     
    dist1 ,dist2分别为 1,n出发的最短路,然后 枚举 u,v dist[u]+dist[v]+w[u][v]中求出次小就好
     
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<string>
    #include<cmath>
    #include<cstdlib>
    #include<vector>
    #include<algorithm>
    #include<queue>
    #include<stack>
    #include<set>
    #define INF 100000000
    using namespace std;
    vector<int> e[5001],w[5001];
    int dist1[5001],dist2[5001];
    bool vis[5001];
    int n,m;
    void spfa(int st,int dist[])
    {
        queue<int> q;
        memset(vis,0,sizeof(vis));
        for(int i=1;i<=n;i++)
            dist[i]=INF;
        dist[st]=0;
        vis[st]=1;
        q.push(st);
        while(!q.empty())
        {
            int x;
            x=q.front(),q.pop();
            vis[x]=0;
            for(int i=0;i<e[x].size();i++)
            {
                int v=e[x][i];
                if(dist[x]+w[x][i]<dist[v])
                {
                    dist[v]=dist[x]+w[x][i];
                    if(!vis[v])
                    {
                        vis[v]=1;
                        q.push(v);
                    }
                }
            }
        }
    }
    int main()
    {
        scanf("%d%d",&n,&m);
        for(int i=1;i<=m;i++)
        {
            int x,y,z;
            scanf("%d%d%d",&x,&y,&z);
            e[x].push_back(y);
            e[y].push_back(x);
            w[x].push_back(z);
            w[y].push_back(z);
        }
        spfa(1,dist1);
        spfa(n,dist2);
        int ans1,ans2;
        ans1=ans2=INF;
        for(int u=1;u<=n;u++)
        {
            for(int j=0;j<e[u].size();j++)
            {
                int v=e[u][j];
                if(dist1[u]+dist2[v]+w[u][j]<ans1)
                {
                    ans2=ans1;
                    ans1=dist1[u]+dist2[v]+w[u][j];
                }
                else if(dist1[u]+dist2[v]+w[u][j]<ans2&&dist1[u]+dist2[v]+w[u][j]!=ans1)
                {
                    ans2=dist1[u]+dist2[v]+w[u][j];
                }
            }
        }
        printf("%d
    ",ans2);
        return 0;
    }
    

      

  • 相关阅读:
    API接口签名验证2
    jps看不到进程号 规格严格
    XP Administrator账户没有了?显示欢迎屏幕下所隐藏的Administrator账户 规格严格
    PDH 规格严格
    plugin.xml 规格严格
    强大的备份软件 规格严格
    关于工具使用 规格严格
    java.library.path属性在代码中设置不生效问题 规格严格
    RCP 规格严格
    Linux下信息查询 规格严格
  • 原文地址:https://www.cnblogs.com/water-full/p/4475350.html
Copyright © 2020-2023  润新知