从神 Karry 的题单过来的,然后自己瞎 yy 了一个方法,看题解区里没有,便来写一个题解
一个常数和复杂度都很大的题解
令 (dp_{i,j}) 为 在 (i) 个球中选 (j) 组的方案数,则显然有转移 (dp_{i,j}=dp_{i-1,j}+dp_{i-1,j-1}+dp_{i-2,j-1})
然后考虑对其优化:
令 (f_i) 为 (dp_i) 的生成函数,则 (f_i) 只与 (f_{i-1}) 和 (f_{i-2}) 有关,且关系为 (f_i=f_{i-2}cdot x + f_{i-1}cdot (x+1)) .
然后考虑对上式进行矩阵加速递推,复杂度 (O(k log k log n)),再加一个巨大的常数,但此题 (k) 的范围很小,可以通过。
代码:
#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define mp make_pair
#define Fast_IO ios::sync_with_stdio(false);
#define fir first
#define sec second
#define mod 998244353
#define ll long long
inline int read()
{
char ch=getchar(); int nega=1; while(!isdigit(ch)) {if(ch=='-') nega=-1; ch=getchar();}
int ans=0; while(isdigit(ch)) {ans=ans*10+ch-48;ch=getchar();}
if(nega==-1) return -ans;
return ans;
}
typedef pair<int,int> pii;
int add(int x,int y){return x+y>=mod?x+y-mod:x+y;}
int sub(int x,int y){return x-y<0?x-y+mod:x-y;}
int mul(int x,int y){return 1LL*x*y%mod;}
int qpow(int x,int y)
{
int ans=1;
while(y)
{
if(y&1) ans=mul(ans,x);
x=mul(x,x);
y>>=1;
}
return ans;
}
int getInv(int x)
{
return qpow(x,mod-2);
}
// 略去多项式的板子,以下 vector 即是存储多项式的容器
using namespace Poly;
int n,k;
struct Mat
{
vector<int> a[3][3];
void clear()
{
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)
{
a[i][j].resize(1);
a[i][j][0]=0;
}
}
}
};
Mat mul(Mat x,Mat y)
{
Mat ans; ans.clear();
for(int i=1;i<=2;i++)
{
for(int j=1;j<=2;j++)
{
for(int k=1;k<=2;k++)
{
ans.a[i][j]=ans.a[i][j]+x.a[i][k]*y.a[k][j];
}
}
}
for(int i=1;i<=2;i++)
{
for(int j=1;j<=2;j++)
{
if((int)ans.a[i][j].size()>k+1) ans.a[i][j].resize(k+1);
}
}
return ans;
}
Mat qpow(Mat x,int y)
{
Mat ans; ans.clear();
ans.a[1][1]=one,ans.a[2][2]=one;
while(y)
{
if(y&1)
{
ans=mul(ans,x);
}
x=mul(x,x);
y>>=1;
}
return ans;
}
signed main()
{
Init_Inv();
cin>>n>>k;
Mat a; a.clear();
a.a[1][2].resize(2); a.a[1][2][1]=1;
a.a[2][1]=one;
a.a[2][2].resize(2); a.a[2][2][1]=a.a[2][2][0]=1;
a=qpow(a,n-1);
Mat R; R.clear();
R.a[1][1]=one;
R.a[1][2].resize(2); R.a[1][2][0]=1,R.a[1][2][1]=1;
R=mul(R,a);
vector<int> ans=R.a[1][2];
ans.resize(k+1);
for(int i=1;i<=k;i++) printf("%d ",ans[i]); cout<<"
";
return 0;
}