• Spark机器学习笔记一


    Spark机器学习库现支持两种接口的API:RDD-based和DataFrame-based,Spark官方网站上说,RDD-based APIs在2.0后进入维护模式,主要的机器学习API是spark-ml包中的DataFrame-based API,并将在3.0后完全移除RDD-based API。

    在学习了两周Spark MLlib后,准备转向DataFrame-based接口。由于现有的文档资料均是RDD-based接口,于是便去看了看Spark MLlib的源码。DataFrame-based API 包含在org.apache.spark.ml包中,其中主要的类结构如下:

    咱先看一个线性回归的例子examples/ml/LinearRegressionExample.scala,其首先定义了一个LinearRegression的对象:

    val lir = new LinearRegression()
              .setFeaturesCol("features")
              .setLabelCol("label")
              .setRegParam(params.regParam)
              .setElasticNetParam(params.elasticNetParam)
              .setMaxIter(params.maxIter)
              .setTol(params.tol)

    然后,调用fit方法训练数据,得到一个训练好的模型lirModel,它是一个LinearRegressionModel类的对象。

    val lirModel = lir.fit(training)

    现在,我们大概可以理清MLlib机器学习的流程,和很多单机机器学习库一样,先定义一个模型并设置好参数,然后训练数据,最后返回一个训练好了的模型。

    我们现在在源码中去查看LinearRegression和LinearRegressionModel,其类的依赖关系如下:

    LinearRegression是一个Predictor,LinearRegressionModel是一个Model,那么Predictor是学习算法,Model是训练得到的模型。除此之外,还有一类继承自Params的类,这是一个表示参数的类。Predictor 和Model 共享一套参数。

    现在用Spark MLlib来完成第一个机器学习例子,数据是我之前放在txt文件里的回归数据,一共550多万条,共13列,第一列是Label,后面是Features。分别演示两种接口,先用旧的接口:

    1.读取原始数据:

    scala> import org.apache.spark.mllib.linalg._
    import org.apache.spark.mllib.linalg._
    scala> import org.apache.spark.mllib.regression._
    import org.apache.spark.mllib.regression._      
    scala> val raw_data = sc.textFile("data/my/y_x.txt")
    raw_data: org.apache.spark.rdd.RDD[String] = data/my/y_x.txt MapPartitionsRDD[1] at textFile at <console>:30

    2.转换格式,RDD-based接口以LabeledPoint为输入数据的格式:

    scala> val data = raw_data.map{ line =>
         | val arr = line.split(' ').map(_.toDouble)
         | val label = arr.head
         | val features = Vectors.dense(arr.tail)| LabeledPoint(label,features)
         | }
    data: org.apache.spark.rdd.RDD[org.apache.spark.mllib.regression.LabeledPoint] = MapPartitionsRDD[2] at map at <console>:32

    3.划分train、test数据集:

    scala> val splits = data.randomSplit(Array(0.8, 0.2))
    splits: Array[org.apache.spark.rdd.RDD[org.apache.spark.mllib.regression.LabeledPoint]] = Array(MapPartitionsRDD[3] at randomSplit at <console>:34, MapPartitionsRDD[4] at randomSplit at <console>:34)
    scala> val train_set = splits(0).cache
    train_set: org.apache.spark.rdd.RDD[org.apache.spark.mllib.regression.LabeledPoint] = MapPartitionsRDD[3] at randomSplit at <console>:34
    scala> val test_set = splits(1).cache
    test_set: org.apache.spark.rdd.RDD[org.apache.spark.mllib.regression.LabeledPoint] = MapPartitionsRDD[4] at randomSplit at <console>:34

    4.使用LinearRegressionWithSGD.train训练模型:

    scala> val lr = LinearRegressionWithSGD.train(train_set,100,0.0001)
    warning: there was one deprecation warning; re-run with -deprecation for details
    16/08/26 09:20:44 WARN Executor: 1 block locks were not released by TID = 0:
    [rdd_3_0]
    lr: org.apache.spark.mllib.regression.LinearRegressionModel = org.apache.spark.mllib.regression.LinearRegressionModel: intercept = 0.0, numFeatures = 12

    5.模型评估:

    scala> val pred_labels = test_set.map(lp => (lp.label, lr.predict(lp.features))) 
    pred_labels: org.apache.spark.rdd.RDD[(Double, Double)] = MapPartitionsRDD[17] at map at <console>:42
    scala> val mse = pred_labels.map{case (p,v) => math.pow(p-v,2)}.mean
    mse: Double = 0.05104150735910074

    再用新的接口:

    1.读取原始数据:

    scala> import org.apache.spark.ml.linalg._
    import org.apache.spark.ml.linalg._
    scala> import org.apache.spark.ml.regression._
    import org.apache.spark.ml.regression._
    scala> import org.apache.spark.sql._
    import org.apache.spark.sql._
    scala> val raw_data = spark.read.text("data/my/y_x.txt")
    raw_data: org.apache.spark.sql.DataFrame = [value: string]

    2.转换数据

    scala> val data = raw_data.rdd.map { case Row(line:String) => 
         | val arr = line.split(' ').map(_.toDouble)
         | val label = arr.head
         | val features = Vectors.dense(arr.tail)
         | (label,features)
         | }
    data: org.apache.spark.rdd.RDD[(Double, org.apache.spark.ml.linalg.Vector)] = MapPartitionsRDD[4] at map at <console>:34

    3.划分数据集

    scala> val splits = data.randomSplit(Array(0.8, 0.2))
    splits: Array[org.apache.spark.rdd.RDD[(Double, org.apache.spark.ml.linalg.Vector)]] = Array(MapPartitionsRDD[5] at randomSplit at <console>:36, MapPartitionsRDD[6] at randomSplit at <console>:36)
    scala> val train_set = splits(0).toDS.cache
    train_set: org.apache.spark.sql.Dataset[(Double, org.apache.spark.ml.linalg.Vector)] = [_1: double, _2: vector]
    scala> val test_set = splits(1).toDS.cache
    test_set: org.apache.spark.sql.Dataset[(Double, org.apache.spark.ml.linalg.Vector)] = [_1: double, _2: vector]

    4.创建LinearRegression对象,并设置模型参数。这里设置类LabelCol和FeaturesCol列,默认为“label”和“features”,而我们的数据是"_1"和”_2“。

    scala> val lir = new LinearRegression
    lir: org.apache.spark.ml.regression.LinearRegression = linReg_c4e70a01bcd3
    scala> lir.setFeaturesCol("_2")
    res0: org.apache.spark.ml.regression.LinearRegression = linReg_c4e70a01bcd3
    scala> lir.setLabelCol("_1")
    res1: org.apache.spark.ml.regression.LinearRegression = linReg_c4e70a01bcd3

    5.训练模型

    val model = lir.fit(train_set)
    16/08/26 09:45:16 WARN Executor: 1 block locks were not released by TID = 0:
    [rdd_9_0]
    16/08/26 09:45:16 WARN WeightedLeastSquares: regParam is zero, which might cause numerical instability and overfitting.
    model: org.apache.spark.ml.regression.LinearRegressionModel = linReg_c4e70a01bcd3

    6.模型评估

    scala> val res = model.transform(test_set)
    res: org.apache.spark.sql.DataFrame = [_1: double, _2: vector ... 1 more field]
    scala> import org.apache.spark.ml.evaluation._
    import org.apache.spark.ml.evaluation._
    scala> val eva = new RegressionEvaluator
    eva: org.apache.spark.ml.evaluation.RegressionEvaluator = regEval_8fc6cce63aa9
    scala> eva.setLabelCol("_1")
    res6: eva.type = regEval_8fc6cce63aa9
    scala> eva.setMetricName("mse")
    res7: eva.type = regEval_8fc6cce63aa9
    scala> eva.evaluate(res)
    res8: Double = 0.027933653533088666                 
  • 相关阅读:
    如何快速给pod添加健康检查?
    如何快速下载vagrant的box?
    如何快速新建sql的demo环境?
    如何快速将某个用户添加sudo免密以及docker权限?
    七、Docker+nginx
    六、Docker+Gitlab
    五、Docker+Sqlserver
    四、Docker+Tomcat
    Docker 内程序时间设置,很重要
    三、Docker镜像的相关操作
  • 原文地址:https://www.cnblogs.com/waring/p/5808081.html
Copyright © 2020-2023  润新知