• 实验1


    import pyecharts.options as opts
    from pyecharts.charts import Bar3D
    Hair = ["Black","Brown","Red","Blond","Total"]
    Eye = ["Brown","Blue","Hazel","Green","Total"]
    
    data = [
        [0, 0, 68],
        [0, 1, 119],
        [0, 2, 26],
        [0, 3, 7],
        [0, 4, 220],
        [1, 0, 20],
        [1, 1, 84],
        [1, 2, 17],
        [1, 3, 94],
        [1, 4, 215],
        [2, 0, 15],
        [2, 1, 54],
        [2, 2, 14],
        [2, 3, 10],
        [2, 4, 93],
        [3, 0, 5],
        [3, 1, 29],
        [3, 2, 14],
        [3, 3, 16],
        [3, 4, 64],
        [4, 0, 108],
        [4, 1, 286],
        [4, 2, 71],
        [4, 3, 127],
        [4, 4, 592],
    ]
    data = [[d[1], d[0], d[2]] for d in data]
    
    
    (
        Bar3D(init_opts=opts.InitOpts(width="1600px", height="800px"))
        .add(
            series_name="",
            data=data,
            xaxis3d_opts=opts.Axis3DOpts(type_="category", data=Hair),
            yaxis3d_opts=opts.Axis3DOpts(type_="category", data=Eye),
            zaxis3d_opts=opts.Axis3DOpts(type_="value"),
        )
        .set_global_opts(
            visualmap_opts=opts.VisualMapOpts(
                max_=500,
                range_color=[
                    "#4575b4",
                    "#74add1",
                    "#abd9e9",
                    "#e0f3f8",
                    "#ffffbf",
                    "#fee090",
                    "#fdae61",
                    "#f46d43",
                    "#d73027",
                    "#a50026",
                ],
            )
        )
        .render("bar3d_punch_card.html")
    )

    import random
    from pyecharts import options as opts
    from pyecharts.charts import HeatMap
    from pyecharts.faker import Faker
    
    Hair = ["Black","Brown","Red","Blond","Total"]
    Eye = ["Brown","Blue","Hazel","Green","Total"]
    
    data = [
        [0, 0, 68],
        [0, 1, 119],
        [0, 2, 26],
        [0, 3, 7],
        [0, 4, 220],
        [1, 0, 20],
        [1, 1, 84],
        [1, 2, 17],
        [1, 3, 94],
        [1, 4, 215],
        [2, 0, 15],
        [2, 1, 54],
        [2, 2, 14],
        [2, 3, 10],
        [2, 4, 93],
        [3, 0, 5],
        [3, 1, 29],
        [3, 2, 14],
        [3, 3, 16],
        [3, 4, 64],
        [4, 0, 108],
        [4, 1, 286],
        [4, 2, 71],
        [4, 3, 127],
        [4, 4, 592],
    ]
    data = [[d[1], d[0], d[2]] for d in data]
    c = (
        HeatMap()
        .add_xaxis(Hair)
        .add_yaxis(
            "series0",
            Eye,
            data,
            label_opts=opts.LabelOpts(is_show=True, position="inside"),
        )
        .set_global_opts(
            title_opts=opts.TitleOpts(title="HeatMap-Label 显示"),
            visualmap_opts=opts.VisualMapOpts(),
        )
        .render("/Users/war/Downloads/heatmap_with_label_show.html")
    )

    import pyecharts.options as opts
    from pyecharts.charts import Bar3D
    Dir = ["East","West","North"]
    
    data = [
        [0, 1, 20],
        [0, 2, 28],
        [0, 3, 88],
        [0, 4, 20],
        [1, 1, 30],
        [1, 2, 38],
        [1, 3, 36],
        [1, 4, 31],
        [2, 1, 45],
        [2, 2, 46],
        [2, 3, 44],
        [2, 4, 43],
    ]
    data = [[d[0], d[1], d[2]] for d in data]
    
    
    (
        Bar3D(init_opts=opts.InitOpts(width="1600px", height="800px"))
        .add(
            series_name="",
            data=data,
            xaxis3d_opts=opts.Axis3DOpts(type_="category", data=Dir),
            yaxis3d_opts=opts.Axis3DOpts(type_="value"),
            zaxis3d_opts=opts.Axis3DOpts(type_="value"),
        )
        .set_global_opts(
            visualmap_opts=opts.VisualMapOpts(
                max_=100,
                range_color=[
                    "#4575b4",
                    "#74add1",
                    "#abd9e9",
                    "#e0f3f8",
                    "#ffffbf",
                    "#fee090",
                    "#fdae61",
                    "#f46d43",
                    "#d73027",
                    "#a50026",
                ],
            )
        )
        .render("/Users/war/Downloads/实验1.2.1.html")
    )

    import pyecharts.options as opts
    from pyecharts.charts import Line
    
    Quarter = [0,1,2,3,4]
    East = [0,20,28,88,20]
    West = [0,30,38,36,31]
    North = [0,45,46,44,43]
    
    (
        Line(init_opts=opts.InitOpts(width="1600px", height="800px"))
        .add_xaxis(xaxis_data=Quarter)
        .add_yaxis(
            series_name="East",
            y_axis=East,
        )
        .add_yaxis(
            series_name="West",
            y_axis=West,
        )
        .add_yaxis(
            series_name="North",
            y_axis=North,
        )
        .set_global_opts(
            title_opts=opts.TitleOpts(title="实验2"),
            tooltip_opts=opts.TooltipOpts(trigger="axis"),
            toolbox_opts=opts.ToolboxOpts(is_show=True),
            xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False),
        )
        .render("/Users/war/Downloads/实验1.2.2.html")
    )

  • 相关阅读:
    来自风湿病研究院RA患者队列研究显示, RA日常诊治时特别是早期RA患者成功维持新ACR/EULAR缓解标准能获
    系列超声发现脊柱关节炎附着点处新骨形成
    超声(PDUS)能否容易检出侵蚀?比较PDUS与microCT对正常人群和RA患者小关节生理和皮质断裂的评价
    根据ACR/EULAR 2010 标准定义RA放射学侵蚀病变
    比较依那西普和柳氮磺胺吡碇治疗早期中轴脊柱关节炎1年后的停药缓解率和缓解时间-ESTHER试验的2年数据
    Matlab Computer Vision and Pattern Recognition toolbox
    vi/vim 命令手册(初级篇)
    GCC设定include和库路径(转载)
    linux 下查找文件或者内容常有命令
    svn命令在linux下的使用
  • 原文地址:https://www.cnblogs.com/war1111/p/13778652.html
Copyright © 2020-2023  润新知