• 特征工程代码示例


    1.读入训练集与验证集数据train,test

    train = pd.read_csv('../input/train.csv')
    test = pd.read_csv('../input/test.csv')

    2.将训练与验证集整合到一起,进行特征工程

    具体实施:将这个数据集合整合到一个列表里面,data_full=[train,test]。通过列表的遍历操作对两个数据进行统一处理。泰坦尼克特征工程处理参考:

    full_data = [train, test]
    
    # Some features of my own that I have added in
    # Gives the length of the name
    train['Name_length'] = train['Name'].apply(len)
    test['Name_length'] = test['Name'].apply(len)
    # Feature that tells whether a passenger had a cabin on the Titanic
    train['Has_Cabin'] = train["Cabin"].apply(lambda x: 0 if type(x) == float else 1)
    test['Has_Cabin'] = test["Cabin"].apply(lambda x: 0 if type(x) == float else 1)
    
    # Feature engineering steps taken from Sina
    # Create new feature FamilySize as a combination of SibSp and Parch
    for dataset in full_data:
        dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1
    # Create new feature IsAlone from FamilySize
    for dataset in full_data:
        dataset['IsAlone'] = 0
        dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1
    # Remove all NULLS in the Embarked column
    for dataset in full_data:
        dataset['Embarked'] = dataset['Embarked'].fillna('S')
    # Remove all NULLS in the Fare column and create a new feature CategoricalFare
    for dataset in full_data:
        dataset['Fare'] = dataset['Fare'].fillna(train['Fare'].median())
    train['CategoricalFare'] = pd.qcut(train['Fare'], 4)
    # Create a New feature CategoricalAge
    for dataset in full_data:
        age_avg = dataset['Age'].mean()
        age_std = dataset['Age'].std()
        age_null_count = dataset['Age'].isnull().sum()
        age_null_random_list = np.random.randint(age_avg - age_std, age_avg + age_std, size=age_null_count)
        dataset['Age'][np.isnan(dataset['Age'])] = age_null_random_list
        dataset['Age'] = dataset['Age'].astype(int)
    train['CategoricalAge'] = pd.cut(train['Age'], 5)
    # Define function to extract titles from passenger names
    def get_title(name):
        title_search = re.search(' ([A-Za-z]+).', name)
        # If the title exists, extract and return it.
        if title_search:
            return title_search.group(1)
        return ""
    # Create a new feature Title, containing the titles of passenger names
    for dataset in full_data:
        dataset['Title'] = dataset['Name'].apply(get_title)
    # Group all non-common titles into one single grouping "Rare"
    for dataset in full_data:
        dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col','Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')
    
        dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')
        dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')
        dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')
    
    for dataset in full_data:
        # Mapping Sex
        dataset['Sex'] = dataset['Sex'].map( {'female': 0, 'male': 1} ).astype(int)
        
        # Mapping titles
        title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5}
        dataset['Title'] = dataset['Title'].map(title_mapping)
        dataset['Title'] = dataset['Title'].fillna(0)
        
        # Mapping Embarked
        dataset['Embarked'] = dataset['Embarked'].map( {'S': 0, 'C': 1, 'Q': 2} ).astype(int)
        
        # Mapping Fare
        dataset.loc[ dataset['Fare'] <= 7.91, 'Fare']                                 = 0
        dataset.loc[(dataset['Fare'] > 7.91) & (dataset['Fare'] <= 14.454), 'Fare'] = 1
        dataset.loc[(dataset['Fare'] > 14.454) & (dataset['Fare'] <= 31), 'Fare']   = 2
        dataset.loc[ dataset['Fare'] > 31, 'Fare']                                     = 3
        dataset['Fare'] = dataset['Fare'].astype(int)
        
        # Mapping Age
        dataset.loc[ dataset['Age'] <= 16, 'Age']                            = 0
        dataset.loc[(dataset['Age'] > 16) & (dataset['Age'] <= 32), 'Age'] = 1
        dataset.loc[(dataset['Age'] > 32) & (dataset['Age'] <= 48), 'Age'] = 2
        dataset.loc[(dataset['Age'] > 48) & (dataset['Age'] <= 64), 'Age'] = 3
        dataset.loc[ dataset['Age'] > 64, 'Age'] = 4 ;

    3.具体的分开使用

    例子:

    a=[1,2,3,4,5,6]
    b=[7,8,9,10,11,12]
    c=[a,b]
    c[0][1]=222
    #c=[[1, 222, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]
    #a=[1, 222, 3, 4, 5, 6]
    # Feature selection
    drop_elements = ['PassengerId', 'Name', 'Ticket', 'Cabin', 'SibSp']
    train = train.drop(drop_elements, axis = 1)
    train = train.drop(['CategoricalAge', 'CategoricalFare'], axis = 1)
    test  = test.drop(drop_elements, axis = 1)

     4.样本不均衡数据处理(SMOTE)

    from imblearn.over_sampling import SMOTE
    X_train_res,y_train_res=SMOTE().fit_sample(X_train,y_train)

     5.各个特征之间的相关性

    data.corr()

    6.时间片段

    Now=pd.to_datetime("2019-07-20")
    data["timeperiod"]=(Now-data["CustomerSince"]).apply(lambda x:x.days)

     7.查看特征值是否符合正态分布,如果偏度过大进行boxcox变换

    from scipy.stats import norm, skew
    
    numeric_feats = all_data.dtypes[all_data.dtypes != "object"].index
    
    # Check the skew of all numerical features
    skewed_feats = all_data[numeric_feats].apply(lambda x: skew(x.dropna())).sort_values(ascending=False)
    print("
    Skew in numerical features: 
    ")
    skewness = pd.DataFrame({'Skew' :skewed_feats})
    skewness.head(10)
    skewness = skewness[abs(skewness) > 0.75]
    print("There are {} skewed numerical features to Box Cox transform".format(skewness.shape[0]))
    
    from scipy.special import boxcox1p
    skewed_features = skewness.index
    lam = 0.15
    for feat in skewed_features:
        all_data[feat] = boxcox1p(all_data[feat], lam)

     8.针对特定列,查看列的每一个值的count的可视化。

    sns.barplot(data_init["PhoneType"].value_counts().index[0:10],data_init["PhoneType"].value_counts()[0:10])
    sns.countplot(order=data_init["PhoneType"].value_counts().index,y=data_init["PhoneType"])
  • 相关阅读:
    __dopostback的用法
    Asp.net MVC中防止HttpPost重复提交
    分享SQL2005 查询表结构的SQL语句
    SQL Server char nchar varchar nvarchar的区别
    SQL2005中的XXproperty() 函数归纳
    QQ登录端口研究
    关于SQLSERVER的全文目录跟全文索引的区别
    版本管理软件VisualSVN、TortoiseSvn、AnkhSvn 后记
    SCREEN2EXE视频录像软件 提供技术支持的好帮手
    介绍一款替代SSMS的sqlserver管理工具 toad for sqlserver5.7
  • 原文地址:https://www.cnblogs.com/wangzhenghua/p/11248132.html
Copyright © 2020-2023  润新知