• AI:OPENCV实现人脸的自动识别


    依赖jar包:
    faceRecognition.java
      1 package opencv;
      2 
      3 import java.awt.Graphics;
      4 import java.awt.image.BufferedImage;
      5 
      6 import javax.swing.JFrame;
      7 import javax.swing.JPanel;
      8 import javax.swing.WindowConstants;
      9 
     10 import org.opencv.core.Core;
     11 import org.opencv.core.Mat;
     12 import org.opencv.core.MatOfDouble;
     13 import org.opencv.core.MatOfRect;
     14 import org.opencv.core.Point;
     15 import org.opencv.core.Rect;
     16 import org.opencv.core.Scalar;
     17 import org.opencv.imgproc.Imgproc;
     18 import org.opencv.objdetect.CascadeClassifier;
     19 import org.opencv.objdetect.HOGDescriptor;
     20 import org.opencv.videoio.VideoCapture;
     21 import org.opencv.videoio.Videoio;
     22 
     23 @SuppressWarnings("serial")
     24 public class faceRecognition extends JPanel {
     25 
     26     private BufferedImage mImg;
     27 
     28     private BufferedImage mat2BI(Mat mat) {
     29         int dataSize = mat.cols() * mat.rows() * (int) mat.elemSize();
     30         byte[] data = new byte[dataSize];
     31         mat.get(0, 0, data);
     32         int type = mat.channels() == 1 ? BufferedImage.TYPE_BYTE_GRAY : BufferedImage.TYPE_3BYTE_BGR;
     33 
     34         if (type == BufferedImage.TYPE_3BYTE_BGR) {
     35             for (int i = 0; i < dataSize; i += 3) {
     36                 byte blue = data[i + 0];
     37                 data[i + 0] = data[i + 2];
     38                 data[i + 2] = blue;
     39             }
     40         }
     41         BufferedImage image = new BufferedImage(mat.cols(), mat.rows(), type);
     42         image.getRaster().setDataElements(0, 0, mat.cols(), mat.rows(), data);
     43 
     44         return image;
     45     }
     46 
     47     public void paintComponent(Graphics g) {
     48         if (mImg != null) {
     49             g.drawImage(mImg, 0, 0, mImg.getWidth(), mImg.getHeight(), this);
     50         }
     51     }
     52 
     53     public static void main(String[] args) {
     54         try {
     55             System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
     56 
     57             Mat capImg = new Mat();
     58             VideoCapture capture = new VideoCapture(0);
     59             int height = (int) capture.get(Videoio.CAP_PROP_FRAME_HEIGHT);
     60             int width = (int) capture.get(Videoio.CAP_PROP_FRAME_WIDTH);
     61             if (height == 0 || width == 0) {
     62                 throw new Exception("未发现摄像头!");
     63             }
     64 
     65             // 创建jframe
     66             JFrame frame = new JFrame("摄像头");
     67             frame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
     68             faceRecognition panel = new faceRecognition();
     69             // 添加鼠标监听器
     70             // panel.addMouseListener(new MouseAdapter() {
     71             // @Override
     72             // public void mouseClicked(MouseEvent arg0) {
     73             // System.out.println("鼠标点击");
     74             // }
     75             //
     76             // @Override
     77             // public void mouseMoved(MouseEvent arg0) {
     78             // System.out.println("鼠标移开");
     79             //
     80             // }
     81             //
     82             // @Override
     83             // public void mouseReleased(MouseEvent arg0) {
     84             // System.out.println("鼠标释放");
     85             // }
     86             //
     87             // @Override
     88             // public void mousePressed(MouseEvent arg0) {
     89             // System.out.println("鼠标按下");
     90             // }
     91             //
     92             // @Override
     93             // public void mouseExited(MouseEvent arg0) {
     94             // System.out.println("鼠标出界");
     95             // // System.out.println(arg0.toString());
     96             // }
     97             //
     98             // @Override
     99             // public void mouseDragged(MouseEvent arg0) {
    100             // System.out.println("mouseDragged");
    101             // // System.out.println(arg0.toString());
    102             // }
    103             // });
    104             frame.setContentPane(panel);
    105             frame.setVisible(true);
    106             frame.setSize(width + frame.getInsets().left + frame.getInsets().right,
    107                     height + frame.getInsets().top + frame.getInsets().bottom);
    108             int n = 1;
    109             Mat temp = new Mat();
    110             // while (frame.isShowing() && n <= 500) {
    111             while (frame.isShowing()) {
    112                 // System.out.println("第" + n + "张");
    113                 capture.read(capImg); // 载入图片
    114                 Imgproc.cvtColor(capImg, temp, Imgproc.COLOR_RGB2GRAY);
    115                 // Imgcodecs.imwrite("E:/opencv/wzg/picture_" + n + ".png", temp); // 存储图片到本地
    116                 panel.mImg = panel.mat2BI(detectFace(capImg)); // 调用人脸识别方法
    117                 panel.repaint();
    118                 // n++;
    119                 // break; // 识别500存入本地
    120             }
    121             capture.release();
    122             frame.dispose();
    123         } catch (Exception e) {
    124             System.out.println("例外:" + e);
    125         } finally {
    126             System.out.println("--done--");
    127         }
    128 
    129     }
    130 
    131     /**
    132      * opencv实现人脸识别
    133      * 
    134      * @param img
    135      */
    136     public static Mat detectFace(Mat img) throws Exception {
    137 
    138         // System.out.println("开始人像识别 ... ");
    139         // 从配置文件lbpcascade_frontalface.xml中创建一个人脸识别器,该文件位于opencv安装目录中
    140         CascadeClassifier faceDetector = new CascadeClassifier("E:\my_dev\haarcascade_frontalface_alt.xml");
    141 
    142         // 在图片中检测人脸
    143         MatOfRect faceDetections = new MatOfRect();
    144 
    145         faceDetector.detectMultiScale(img, faceDetections);
    146 
    147         if (faceDetections.toArray().length == 0) {
    148 //            System.out.println("no face");
    149         } else {
    150             System.out.println(String.format("检测到  %s 个人像", faceDetections.toArray().length));
    151         }
    152 
    153         Rect[] rects = faceDetections.toArray();
    154         if (rects != null && rects.length >= 1) {
    155             for (Rect rect : rects) {
    156                 Imgproc.rectangle(img, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.height),
    157                         new Scalar(0, 0, 255), 2);
    158             }
    159         }
    160         return img;
    161     }
    162 
    163     /**
    164      * opencv实现人型识别,hog默认的分类器。所以效果不好。
    165      * 
    166      * @param img
    167      */
    168     public static Mat detectPeople(Mat img) {
    169         // System.out.println("detectPeople...");
    170         if (img.empty()) {
    171             System.out.println("image is exist");
    172         }
    173         HOGDescriptor hog = new HOGDescriptor();
    174         hog.setSVMDetector(HOGDescriptor.getDefaultPeopleDetector());
    175         System.out.println(HOGDescriptor.getDefaultPeopleDetector());
    176         hog.setSVMDetector(HOGDescriptor.getDaimlerPeopleDetector());
    177         MatOfRect regions = new MatOfRect();
    178         MatOfDouble foundWeights = new MatOfDouble();
    179         System.out.println(foundWeights.toString());
    180         hog.detectMultiScale(img, regions, foundWeights);
    181         for (Rect rect : regions.toArray()) {
    182             Imgproc.rectangle(img, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.height),
    183                     new Scalar(0, 0, 255), 2);
    184         }
    185         return img;
    186     }
    187 
    188 }
  • 相关阅读:
    深度学习入门零基础笔记(一)一些相关链接
    华为云计算笔记(摘要略读,零基础)(九)(虚拟化特性介绍华为虚拟化产品特性)
    华为云计算笔记(摘要略读,零基础)(八)(虚拟化特性介绍-虚拟化特性)
    华为云计算笔记(摘要略读,零基础)(七)(虚拟化特性介绍集群特性介绍)
    华为云计算笔记(摘要略读,零基础)(六)(云计算存储基础介绍)
    华为云计算笔记(摘要略读,零基础)(五)(云计算网络基础介绍)
    华为云计算笔记(摘要略读,零基础)(四)(实验 FusionCompute安装)
    华为云计算笔记(摘要略读,零基础)(三)(KVM介绍、FusionCompute架构)
    华为云计算笔记(摘要略读,零基础)(一)(云计算介绍)
    基于kolla部署openstack
  • 原文地址:https://www.cnblogs.com/wangzh1guo/p/9476707.html
Copyright © 2020-2023  润新知