• keras_基本网络层结构(2)_卷积层


    参考文献:http://keras-cn.readthedocs.io/en/latest/layers/convolutional_layer/

    卷积层


     Conv1D层

    keras.layers.convolutional.Conv1D(filters, kernel_size, strides=1, padding='valid', dilation_rate=1, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

    一维卷积层(即时域卷积),用以在一维输入信号上进行邻域滤波。当使用该层作为首层时,需要提供关键字参数input_shape。例如(10,128)代表一个长为10的序列,序列中每个信号为128向量。而(None, 128)代表变长的128维向量序列。

    该层生成将输入信号与卷积核按照单一的空域(或时域)方向进行卷积。如果use_bias=True,则还会加上一个偏置项,若activation不为None,则输出为经过激活函数的输出。

    参数

    • filters:卷积核的数目(即输出的维度)

    • kernel_size:整数或由单个整数构成的list/tuple,卷积核的空域或时域窗长度

    • strides:整数或由单个整数构成的list/tuple,为卷积的步长。任何不为1的strides均与任何不为1的dilation_rate均不兼容

    • padding:补0策略,为“valid”, “same” 或“causal”,“causal”将产生因果(膨胀的)卷积,即output[t]不依赖于input[t+1:]。当对不能违反时间顺序的时序信号建模时有用。参考WaveNet: A Generative Model for Raw Audio, section 2.1.。“valid”代表只进行有效的卷积,即对边界数据不处理。“same”代表保留边界处的卷积结果,通常会导致输出shape与输入shape相同。

    • activation:激活函数,为预定义的激活函数名(参考激活函数),或逐元素(element-wise)的Theano函数。如果不指定该参数,将不会使用任何激活函数(即使用线性激活函数:a(x)=x)

    • dilation_rate:整数或由单个整数构成的list/tuple,指定dilated convolution中的膨胀比例。任何不为1的dilation_rate均与任何不为1的strides均不兼容。

    • use_bias:布尔值,是否使用偏置项

    • kernel_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers

    • bias_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers

    • kernel_regularizer:施加在权重上的正则项,为Regularizer对象

    • bias_regularizer:施加在偏置向量上的正则项,为Regularizer对象

    • activity_regularizer:施加在输出上的正则项,为Regularizer对象

    • kernel_constraints:施加在权重上的约束项,为Constraints对象

    • bias_constraints:施加在偏置上的约束项,为Constraints对象

    输入shape

    形如(samples,steps,input_dim)的3D张量

    输出shape

    形如(samples,new_steps,nb_filter)的3D张量,因为有向量填充的原因,steps的值会改变

    【Tips】可以将Convolution1D看作Convolution2D的快捷版,对例子中(10,32)的信号进行1D卷积相当于对其进行卷积核为(filter_length, 32)的2D卷积。【@3rduncle】


     Conv2D层

    keras.layers.convolutional.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

    二维卷积层,即对图像的空域卷积。该层对二维输入进行滑动窗卷积,当使用该层作为第一层时,应提供input_shape参数。例如input_shape = (128,128,3)代表128*128的彩色RGB图像(data_format='channels_last'

    参数

    • filters:卷积核的数目(即输出的维度)

    • kernel_size:单个整数或由两个整数构成的list/tuple,卷积核的宽度和长度。如为单个整数,则表示在各个空间维度的相同长度。

    • strides:单个整数或由两个整数构成的list/tuple,为卷积的步长。如为单个整数,则表示在各个空间维度的相同步长。任何不为1的strides均与任何不为1的dilation_rate均不兼容

    • padding:补0策略,为“valid”, “same” 。“valid”代表只进行有效的卷积,即对边界数据不处理。“same”代表保留边界处的卷积结果,通常会导致输出shape与输入shape相同。

    • activation:激活函数,为预定义的激活函数名(参考激活函数),或逐元素(element-wise)的Theano函数。如果不指定该参数,将不会使用任何激活函数(即使用线性激活函数:a(x)=x)

    • dilation_rate:单个整数或由两个个整数构成的list/tuple,指定dilated convolution中的膨胀比例。任何不为1的dilation_rate均与任何不为1的strides均不兼容。

    • data_format:字符串,“channels_first”或“channels_last”之一,代表图像的通道维的位置。该参数是Keras 1.x中的image_dim_ordering,“channels_last”对应原本的“tf”,“channels_first”对应原本的“th”。以128x128的RGB图像为例,“channels_first”应将数据组织为(3,128,128),而“channels_last”应将数据组织为(128,128,3)。该参数的默认值是~/.keras/keras.json中设置的值,若从未设置过,则为“channels_last”。

    • use_bias:布尔值,是否使用偏置项

    • kernel_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers

    • bias_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers

    • kernel_regularizer:施加在权重上的正则项,为Regularizer对象

    • bias_regularizer:施加在偏置向量上的正则项,为Regularizer对象

    • activity_regularizer:施加在输出上的正则项,为Regularizer对象

    • kernel_constraints:施加在权重上的约束项,为Constraints对象

    • bias_constraints:施加在偏置上的约束项,为Constraints对象

    输入shape

    ‘channels_first’模式下,输入形如(samples,channels,rows,cols)的4D张量

    ‘channels_last’模式下,输入形如(samples,rows,cols,channels)的4D张量

    注意这里的输入shape指的是函数内部实现的输入shape,而非函数接口应指定的input_shape,请参考下面提供的例子。

    输出shape

    ‘channels_first’模式下,为形如(samples,nb_filter, new_rows, new_cols)的4D张量

    ‘channels_last’模式下,为形如(samples,new_rows, new_cols,nb_filter)的4D张量

    输出的行列数可能会因为填充方法而改变


     SeparableConv2D层

    keras.layers.convolutional.SeparableConv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, depth_multiplier=1, activation=None, use_bias=True, depthwise_initializer='glorot_uniform', pointwise_initializer='glorot_uniform', bias_initializer='zeros', depthwise_regularizer=None, pointwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None)

    该层是在深度方向上的可分离卷积。

    可分离卷积首先按深度方向进行卷积(对每个输入通道分别卷积),然后逐点进行卷积,将上一步的卷积结果混合到输出通道中。参数depth_multiplier控制了在depthwise卷积(第一步)的过程中,每个输入通道信号产生多少个输出通道。

    直观来说,可分离卷积可以看做讲一个卷积核分解为两个小的卷积核,或看作Inception模块的一种极端情况。

    当使用该层作为第一层时,应提供input_shape参数。例如input_shape = (3,128,128)代表128*128的彩色RGB图像

    参数

    • filters:卷积核的数目(即输出的维度)

    • kernel_size:单个整数或由两个个整数构成的list/tuple,卷积核的宽度和长度。如为单个整数,则表示在各个空间维度的相同长度。

    • strides:单个整数或由两个整数构成的list/tuple,为卷积的步长。如为单个整数,则表示在各个空间维度的相同步长。任何不为1的strides均与任何不为1的dilation_rate均不兼容

    • padding:补0策略,为“valid”, “same” 。“valid”代表只进行有效的卷积,即对边界数据不处理。“same”代表保留边界处的卷积结果,通常会导致输出shape与输入shape相同。

    • activation:激活函数,为预定义的激活函数名(参考激活函数),或逐元素(element-wise)的Theano函数。如果不指定该参数,将不会使用任何激活函数(即使用线性激活函数:a(x)=x)

    • dilation_rate:单个整数或由两个个整数构成的list/tuple,指定dilated convolution中的膨胀比例。任何不为1的dilation_rate均与任何不为1的strides均不兼容。

    • data_format:字符串,“channels_first”或“channels_last”之一,代表图像的通道维的位置。该参数是Keras 1.x中的image_dim_ordering,“channels_last”对应原本的“tf”,“channels_first”对应原本的“th”。以128x128的RGB图像为例,“channels_first”应将数据组织为(3,128,128),而“channels_last”应将数据组织为(128,128,3)。该参数的默认值是~/.keras/keras.json中设置的值,若从未设置过,则为“channels_last”。

    • use_bias:布尔值,是否使用偏置项

    • depth_multiplier:在按深度卷积的步骤中,每个输入通道使用多少个输出通道

    • kernel_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers

    • bias_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers

    • depthwise_regularizer:施加在按深度卷积的权重上的正则项,为Regularizer对象

    • pointwise_regularizer:施加在按点卷积的权重上的正则项,为Regularizer对象

    • kernel_regularizer:施加在权重上的正则项,为Regularizer对象

    • bias_regularizer:施加在偏置向量上的正则项,为Regularizer对象

    • activity_regularizer:施加在输出上的正则项,为Regularizer对象

    • kernel_constraints:施加在权重上的约束项,为Constraints对象

    • bias_constraints:施加在偏置上的约束项,为Constraints对象

    • depthwise_constraint:施加在按深度卷积权重上的约束项,为Constraints对象

    • pointwise_constraint施加在按点卷积权重的约束项,为Constraints对象

    输入shape

    ‘channels_first’模式下,输入形如(samples,channels,rows,cols)的4D张量

    ‘channels_last’模式下,输入形如(samples,rows,cols,channels)的4D张量

    注意这里的输入shape指的是函数内部实现的输入shape,而非函数接口应指定的input_shape,请参考下面提供的例子。

    输出shape

    ‘channels_first’模式下,为形如(samples,nb_filter, new_rows, new_cols)的4D张量

    ‘channels_last’模式下,为形如(samples,new_rows, new_cols,nb_filter)的4D张量

    输出的行列数可能会因为填充方法而改变


     Conv2DTranspose层

    keras.layers.convolutional.Conv2DTranspose(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

    该层是转置的卷积操作(反卷积)。需要反卷积的情况通常发生在用户想要对一个普通卷积的结果做反方向的变换。例如,将具有该卷积层输出shape的tensor转换为具有该卷积层输入shape的tensor。同时保留与卷积层兼容的连接模式。

    当使用该层作为第一层时,应提供input_shape参数。例如input_shape = (3,128,128)代表128*128的彩色RGB图像

    参数

    • filters:卷积核的数目(即输出的维度)

    • kernel_size:单个整数或由两个个整数构成的list/tuple,卷积核的宽度和长度。如为单个整数,则表示在各个空间维度的相同长度。

    • strides:单个整数或由两个整数构成的list/tuple,为卷积的步长。如为单个整数,则表示在各个空间维度的相同步长。任何不为1的strides均与任何不为1的dilation_rate均不兼容

    • padding:补0策略,为“valid”, “same” 。“valid”代表只进行有效的卷积,即对边界数据不处理。“same”代表保留边界处的卷积结果,通常会导致输出shape与输入shape相同。

    • activation:激活函数,为预定义的激活函数名(参考激活函数),或逐元素(element-wise)的Theano函数。如果不指定该参数,将不会使用任何激活函数(即使用线性激活函数:a(x)=x)

    • dilation_rate:单个整数或由两个个整数构成的list/tuple,指定dilated convolution中的膨胀比例。任何不为1的dilation_rate均与任何不为1的strides均不兼容。

    • data_format:字符串,“channels_first”或“channels_last”之一,代表图像的通道维的位置。该参数是Keras 1.x中的image_dim_ordering,“channels_last”对应原本的“tf”,“channels_first”对应原本的“th”。以128x128的RGB图像为例,“channels_first”应将数据组织为(3,128,128),而“channels_last”应将数据组织为(128,128,3)。该参数的默认值是~/.keras/keras.json中设置的值,若从未设置过,则为“channels_last”。

    • use_bias:布尔值,是否使用偏置项

    • kernel_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers

    • bias_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。参考initializers

    • kernel_regularizer:施加在权重上的正则项,为Regularizer对象

    • bias_regularizer:施加在偏置向量上的正则项,为Regularizer对象

    • activity_regularizer:施加在输出上的正则项,为Regularizer对象

    • kernel_constraints:施加在权重上的约束项,为Constraints对象

    • bias_constraints:施加在偏置上的约束项,为Constraints对象

    输入shape

    ‘channels_first’模式下,输入形如(samples,channels,rows,cols)的4D张量

    ‘channels_last’模式下,输入形如(samples,rows,cols,channels)的4D张量

    注意这里的输入shape指的是函数内部实现的输入shape,而非函数接口应指定的input_shape,请参考下面提供的例子。

    输出shape

    ‘channels_first’模式下,为形如(samples,nb_filter, new_rows, new_cols)的4D张量

    ‘channels_last’模式下,为形如(samples,new_rows, new_cols,nb_filter)的4D张量

    输出的行列数可能会因为填充方法而改变




  • 相关阅读:
    cloud-api-service和cloud-iopm-web提交merge方法
    Java知识点-判断null、空字符串和空格
    Windows本机搭建Redis
    api-gateway-engine知识点(2)
    能够提高开发效率的Eclipse实用操作
    IOP知识点(2)
    获取分辨率及dp/px换算
    Android软件自动更新(自定义处理,不使用第三方)
    友盟自动更新参数详解
    [Android]ping -c 1 -w 100 sina.cn的解析
  • 原文地址:https://www.cnblogs.com/wangyarui/p/8692562.html
Copyright © 2020-2023  润新知