• BFS+最小生成树+倍增+LCA【bzoj】4242 水壶


    【bzoj4242 水壶】

    Description

    JOI君所居住的IOI市以一年四季都十分炎热著称。

    IOI市是一个被分成纵H*横W块区域的长方形,每个区域都是建筑物、原野、墙壁之一。建筑物的区域有P个,编号为1...P。

    JOI君只能进入建筑物与原野,而且每次只能走到相邻的区域中,且不能移动到市外。

    JOI君因为各种各样的事情,必须在各个建筑物之间往返。虽然建筑物中的冷气设备非常好,但原野上的日光十分强烈,因此在原野上每走过一个区域都需要1单位的水。此外,原野上没有诸如自动售货机、饮水处之类的东西,因此IOI市的市民一般都携带水壶出行。大小为x的水壶最多可以装x单位的水,建筑物里有自来水可以将水壶装满。

    由于携带大水壶是一件很困难的事情,因此JOI君决定携带尽量小的水壶移动。因此,为了随时能在建筑物之间移动,请你帮他写一个程序来计算最少需要多大的水壶。

    现在给出IOI市的地图和Q个询问,第i个询问(1<=i<=Q)为“在建筑物Si和Ti之间移动,最小需要多大的水壶?”,请你对于每个询问输出对应的答案。

    Input

    第一行四个空格分隔的整数H,W,P,Q,表示IOI市被分成了纵H*横W块区域,有P个建筑物,Q次询问。

    接下来H行,第i行(1<=i<=H)有一个长度为W的字符串,每个字符都是’.’或’#’之一,’.’表示这个位置是建筑物或原野,’#’表示这个位置是墙壁。

    接下来P行描述IOI市每个建筑物的位置,第i行(1<=i<=P)有两个空格分隔的整数Ai和Bi,表示第i个建筑物的位置在第Ai行第Bi列。保证这个位置在地图中是’.’

    接下来Q行,第i行(1<=i<=Q)有两个空格分隔的整数Si和Ti,表示第i个询问为“在建筑物Si和Ti之间移动,最小需要多大的水壶?”

    Output

    输出Q行,第i行(1<=i<=Q)一个整数,表示在建筑物Si和Ti之间移动最小需要多大的水壶。

    如果无法到达,输出-1。此外,如果不需要经过原野就能到达,输出0。

    好题。不过我太菜了做了好几个小时。

    题目大意就是给你一个2000*2000的图形,在这个图形里有一些障碍,还有200000个点。

    每次给你一对点,让你求这对点之间的点与点的路径中最小的最大值。

    首先找两个点之间路径上边的最小的最大值,那么直接想到货车运输这道题,但是我们有的不是一颗树而是一个图。所以需要我们建边。

    个人认为这个题最大的难点就在建边。

    因为点数是200000级别的,先不管建完图跑什么算法,光是建边就建不了。

    那么我们想一下,题目中给了一个很奇怪的图,所以我们从这个图入手。

    很容易想到,不可能建出(n^2)条边,我们只能找一些点满足这两个点没有其他的点,再把这两个点连起来。所以现在来思博一下:我们把在这个图上的每个点看成一个小岛,并且每个小岛还能不断扩大,那么当小岛扩大到相邻时,我们就可以把这两个小岛代表的点连起来,这样的连边策略一定是最优的。

    以为首先,我们保证了每个点之间都可以互相到达,其次我们要求的是最大边最小,所以尽可能的让边短一点,那就肯定是找最近的,小岛策略正好符合。

    所以我们建边的方式就是BFS,将每一个点扔到队列里,再以每个点为中心向四个方向扩散,如果扩散到的点没有被标记,那么就打上标记化作这个点的领地。相反,如果扩散到的点被标记,那么我们认为这两个小岛相连了,那么就直接连一条边就行。

    有考虑到会有障碍,所以在BFS的时候记一个步数就行。

    建完边之后问题就变得可做了很多。

    我们先跑一遍MST,然后直接倍增LCA就可以了。

    细节比较多,好题。

    #include<iostream>
    #include<cstdio>
    #include<queue>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int wx=2017;
    inline int read(){
    	int sum=0,f=1;char ch=getchar();
    	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    	while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0';ch=getchar();}
    	return sum*f;
    }
    int num,tot;
    int n,m,qq,p;
    char c[200017];
    queue<int > q;
    int dx[]={0,1,0,-1,0};
    int dy[]={0,0,1,0,-1};
    int a[wx][wx],vis[wx][wx],dis[wx][wx];
    int d[200017][21],f[200017][21],fa[200017];
    int dep[4000017];
    int head[4000017r];
    struct node{
    	int l,r,d;
    	friend bool operator < (const node& a,const node& b){
    		return a.d<b.d;
    	}
    }t[4000017];
    struct e{
    	int nxt,to,dis;
    }edge[4000017];
    void add(int from,int to,int dis){
    	edge[++num].nxt=head[from];
    	edge[num].to=to;
    	edge[num].dis=dis;
    	head[from]=num;
    }
    int find(int x){
    	if(fa[x]==x)return x;
    	return fa[x]=find(fa[x]);
    }
    void bfs(){
    	while(q.size()){
    		int ux=q.front();q.pop();
    		int uy=q.front();q.pop();
    		for(int i=1;i<=4;i++){
    			int ex=ux+dx[i];
    			int ey=uy+dy[i];
    			if(ex<1||ex>n||ey<1||ey>m||a[ex][ey])continue;
    			if(dis[ex][ey]==-1){
    				vis[ex][ey]=vis[ux][uy];dis[ex][ey]=dis[ux][uy]+1;
    				q.push(ex);q.push(ey);
    			}
    			else {
    				if(vis[ex][ey]!=vis[ux][uy]){
    					t[++tot].l=vis[ux][uy];
    					t[tot].r=vis[ex][ey];
    					t[tot].d=dis[ex][ey]+dis[ux][uy];
    				}
    			}
    		}
    	}
    }
    void Kruskal(){
    	for(int i=1;i<=p;i++)fa[i]=i;
    	sort(t+1,t+1+tot);
    	for(int i=1;i<=tot;i++){
    		int x=find(t[i].l);int y=find(t[i].r);
    		if(x==y)continue;
    		add(x,y,t[i].d);
    		add(y,x,t[i].d);
    		fa[x]=y;
    	}
    }
    void dfs(int u,int ff,int gg){
    	dep[u]=dep[ff]+1;f[u][0]=ff;d[u][0]=gg;
    	for(int i=1;i<=20;i++){
    		f[u][i]=f[f[u][i-1]][i-1];
    		d[u][i]=max(d[u][i-1],d[f[u][i-1]][i-1]);
    	}
    	for(int i=head[u];i!=-1;i=edge[i].nxt){
    		int v=edge[i].to;
    		if(v==ff)continue;
    		dfs(v,u,edge[i].dis);
    	}
    }
    int FFF(int x,int y){
    	int maxn=0;
    	if(dep[x]<dep[y])swap(x,y);
    	for(int i=20;i>=0;i--){
    		if(dep[f[x][i]]>=dep[y]){
    			maxn=max(maxn,d[x][i]);
    			x=f[x][i];
    		}
    	}
    	if(x==y)return maxn;
    	for(int i=20;i>=0;i--){
    		if(f[x][i]!=f[y][i]){
    			maxn=max(maxn,d[x][i]);
    			maxn=max(maxn,d[y][i]);
    			x=f[x][i];y=f[y][i];
    		}
    	}
    	return max(maxn,max(d[x][0],d[y][0]));
    }
    int main(){
    	n=read();m=read();p=read();qq=read();
    	for(int i=1;i<=n;i++){
    		scanf("%s",c+1);
    		for(int j=1;j<=m;j++){
    			a[i][j]=(c[j]=='#');
    		}
    	}
    	memset(head,-1,sizeof head);
    	memset(dis,-1,sizeof dis);
    //	memset(d,-1,sizeof d);
    	for(int i=1;i<=p;i++){
    		int x,y;
    		x=read();y=read();
    		vis[x][y]=i;dis[x][y]=0;
    		q.push(x);q.push(y);
    	}
    	bfs();
    	Kruskal();
    	for(int i=1;i<=p;i++){
    		if(!f[i][0])dfs(i,0,0);
    	}
    	for(int i=1;i<=qq;i++){
    		int x,y;
    		x=read();y=read();
    		if(find(x)!=find(y))printf("-1
    ");
    		else printf("%d
    ",FFF(x,y));
    	}
    	return 0;
    }
    
  • 相关阅读:
    关于IE6不能兼容LCUC使用的PNG透明图象
    rmvb压制中高级技巧
    不错的课件网站
    C#程序多用户只启动一个进程的方法
    不可想像的加密光盘复制工具
    检测远程URL是否存在的三种方法
    请哪里有英文单词单复数转换的代码?
    一些感想,欢迎拍砖
    Some thoughts on my own O/R Mapping or Code Generation tools
    有了net send,谁还用IM?
  • 原文地址:https://www.cnblogs.com/wangxiaodai/p/9755726.html
Copyright © 2020-2023  润新知