• SVM实用操作: svmtrain and svmclassify


    1 load fisheriris
    2 data = [meas(:,1), meas(:,2)];
    3 groups = ismember(species,'setosa');
    4 [train, test] = crossvalind('holdOut',groups);
    5 cp = classperf(groups);
    6 svmStruct = svmtrain(data(train,:),groups(train),'showplot',true);
    7 
    8 classes = svmclassify(svmStruct,data(test,:),'showplot',true);
    9 classperf(cp,classes,test);

    svmstruct = svmtrain(Training, Group)

    Rows of TRAINING correspond to observations; columns correspond to features. Y is a column vector that contains the known class labels for TRAINING.

    Y is a grouping variable, i.e., it can be a categorical, numeric, or logical vector; a cell vector of strings; or a character matrix with each row representing a

    class label (see help for groupingvariable). Each element of Y specifies the group the corresponding row of TRAINING belongs to.

    TRAINING and Y must have the same number of rows. SVMSTRUCT contains information about the trained classifier, including the support vectors, that

    is used by SVMCLASSIFY for classification. svmtrain treats NaNs, empty strings or 'undefined' values as missing values and ignores the corresponding

    rows in TRAINING and Y.

    Group = svmclassify(SVMStruct, Sample)

    >> help svmclassify
     svmclassify Classify data using a support vector machine
        GROUP = svmclassify(SVMSTRUCT, TEST) classifies each row in TEST using the support vector machine classifier structure SVMSTRUCT created
        using SVMTRAIN, and returns the predicted class level GROUP. TEST must have the same number of columns as the data used to train the

        classifier in SVMTRAIN. GROUP indicates the group to which each row of TEST is assigned.
     
        GROUP = svmclassify(...,'SHOWPLOT',true) plots the test data TEST on the figure created using the SHOWPLOT option in SVMTRAIN.

    -----------------------------------------------------------------------------------------------

    -----------------------------------------------------------------------------------------------

    利用libsvm做多分类问题的经典案例:

    [y, x] = libsvmread('iris.scale.txt');
    m = svmtrain(y, x, '-t 0');
    test_y=[1;2;3];
    test_x=[-0.555556 0.25 -0.864407 -0.916667;
    0.444444 -0.0833334 0.322034 0.166667 ;
    -0.277778 -0.333333 0.322034 0.583333 ];
    [predict_label, accuracy, prob_estimates] = svmpredict(test_y, test_x, m);
    数据:'iris.scale'可在Libsvm网站上有。共有三类。

    iris.scale.txt 文档为:
    
    1 1:-0.555556 2:0.25 3:-0.864407 4:-0.916667
    1 1:-0.666667 2:-0.166667 3:-0.864407 4:-0.916667
    1 1:-0.777778 3:-0.898305 4:-0.916667
    1 1:-0.833333 2:-0.0833334 3:-0.830508 4:-0.916667
    1 1:-0.611111 2:0.333333 3:-0.864407 4:-0.916667
    1 1:-0.388889 2:0.583333 3:-0.762712 4:-0.75
    1 1:-0.833333 2:0.166667 3:-0.864407 4:-0.833333
    1 1:-0.611111 2:0.166667 3:-0.830508 4:-0.916667
    1 1:-0.944444 2:-0.25 3:-0.864407 4:-0.916667
    1 1:-0.666667 2:-0.0833334 3:-0.830508 4:-1
    1 1:-0.388889 2:0.416667 3:-0.830508 4:-0.916667
    1 1:-0.722222 2:0.166667 3:-0.79661 4:-0.916667
    1 1:-0.722222 2:-0.166667 3:-0.864407 4:-1
    1 1:-1 2:-0.166667 3:-0.966102 4:-1
    1 1:-0.166667 2:0.666667 3:-0.932203 4:-0.916667
    1 1:-0.222222 2:1 3:-0.830508 4:-0.75
    1 1:-0.388889 2:0.583333 3:-0.898305 4:-0.75
    1 1:-0.555556 2:0.25 3:-0.864407 4:-0.833333
    1 1:-0.222222 2:0.5 3:-0.762712 4:-0.833333
    1 1:-0.555556 2:0.5 3:-0.830508 4:-0.833333
    1 1:-0.388889 2:0.166667 3:-0.762712 4:-0.916667
    1 1:-0.555556 2:0.416667 3:-0.830508 4:-0.75
    1 1:-0.833333 2:0.333333 3:-1 4:-0.916667
    1 1:-0.555556 2:0.0833333 3:-0.762712 4:-0.666667
    1 1:-0.722222 2:0.166667 3:-0.694915 4:-0.916667
    1 1:-0.611111 2:-0.166667 3:-0.79661 4:-0.916667
    1 1:-0.611111 2:0.166667 3:-0.79661 4:-0.75
    1 1:-0.5 2:0.25 3:-0.830508 4:-0.916667
    1 1:-0.5 2:0.166667 3:-0.864407 4:-0.916667
    1 1:-0.777778 3:-0.79661 4:-0.916667
    1 1:-0.722222 2:-0.0833334 3:-0.79661 4:-0.916667
    1 1:-0.388889 2:0.166667 3:-0.830508 4:-0.75
    1 1:-0.5 2:0.75 3:-0.830508 4:-1
    1 1:-0.333333 2:0.833333 3:-0.864407 4:-0.916667
    1 1:-0.666667 2:-0.0833334 3:-0.830508 4:-1
    1 1:-0.611111 3:-0.932203 4:-0.916667
    1 1:-0.333333 2:0.25 3:-0.898305 4:-0.916667
    1 1:-0.666667 2:-0.0833334 3:-0.830508 4:-1
    1 1:-0.944444 2:-0.166667 3:-0.898305 4:-0.916667
    1 1:-0.555556 2:0.166667 3:-0.830508 4:-0.916667
    1 1:-0.611111 2:0.25 3:-0.898305 4:-0.833333
    1 1:-0.888889 2:-0.75 3:-0.898305 4:-0.833333
    1 1:-0.944444 3:-0.898305 4:-0.916667
    1 1:-0.611111 2:0.25 3:-0.79661 4:-0.583333
    1 1:-0.555556 2:0.5 3:-0.694915 4:-0.75
    1 1:-0.722222 2:-0.166667 3:-0.864407 4:-0.833333
    1 1:-0.555556 2:0.5 3:-0.79661 4:-0.916667
    1 1:-0.833333 3:-0.864407 4:-0.916667
    1 1:-0.444444 2:0.416667 3:-0.830508 4:-0.916667
    1 1:-0.611111 2:0.0833333 3:-0.864407 4:-0.916667
    2 1:0.5 3:0.254237 4:0.0833333
    2 1:0.166667 3:0.186441 4:0.166667
    2 1:0.444444 2:-0.0833334 3:0.322034 4:0.166667
    2 1:-0.333333 2:-0.75 3:0.0169491 4:-4.03573e-08
    2 1:0.222222 2:-0.333333 3:0.220339 4:0.166667
    2 1:-0.222222 2:-0.333333 3:0.186441 4:-4.03573e-08
    2 1:0.111111 2:0.0833333 3:0.254237 4:0.25
    2 1:-0.666667 2:-0.666667 3:-0.220339 4:-0.25
    2 1:0.277778 2:-0.25 3:0.220339 4:-4.03573e-08
    2 1:-0.5 2:-0.416667 3:-0.0169491 4:0.0833333
    2 1:-0.611111 2:-1 3:-0.152542 4:-0.25
    2 1:-0.111111 2:-0.166667 3:0.0847457 4:0.166667
    2 1:-0.0555556 2:-0.833333 3:0.0169491 4:-0.25
    2 1:-1.32455e-07 2:-0.25 3:0.254237 4:0.0833333
    2 1:-0.277778 2:-0.25 3:-0.118644 4:-4.03573e-08
    2 1:0.333333 2:-0.0833334 3:0.152542 4:0.0833333
    2 1:-0.277778 2:-0.166667 3:0.186441 4:0.166667
    2 1:-0.166667 2:-0.416667 3:0.0508474 4:-0.25
    2 1:0.0555554 2:-0.833333 3:0.186441 4:0.166667
    2 1:-0.277778 2:-0.583333 3:-0.0169491 4:-0.166667
    2 1:-0.111111 3:0.288136 4:0.416667
    2 1:-1.32455e-07 2:-0.333333 3:0.0169491 4:-4.03573e-08
    2 1:0.111111 2:-0.583333 3:0.322034 4:0.166667
    2 1:-1.32455e-07 2:-0.333333 3:0.254237 4:-0.0833333
    2 1:0.166667 2:-0.25 3:0.118644 4:-4.03573e-08
    2 1:0.277778 2:-0.166667 3:0.152542 4:0.0833333
    2 1:0.388889 2:-0.333333 3:0.288136 4:0.0833333
    2 1:0.333333 2:-0.166667 3:0.355932 4:0.333333
    2 1:-0.0555556 2:-0.25 3:0.186441 4:0.166667
    2 1:-0.222222 2:-0.5 3:-0.152542 4:-0.25
    2 1:-0.333333 2:-0.666667 3:-0.0508475 4:-0.166667
    2 1:-0.333333 2:-0.666667 3:-0.0847458 4:-0.25
    2 1:-0.166667 2:-0.416667 3:-0.0169491 4:-0.0833333
    2 1:-0.0555556 2:-0.416667 3:0.38983 4:0.25
    2 1:-0.388889 2:-0.166667 3:0.186441 4:0.166667
    2 1:-0.0555556 2:0.166667 3:0.186441 4:0.25
    2 1:0.333333 2:-0.0833334 3:0.254237 4:0.166667
    2 1:0.111111 2:-0.75 3:0.152542 4:-4.03573e-08
    2 1:-0.277778 2:-0.166667 3:0.0508474 4:-4.03573e-08
    2 1:-0.333333 2:-0.583333 3:0.0169491 4:-4.03573e-08
    2 1:-0.333333 2:-0.5 3:0.152542 4:-0.0833333
    2 1:-1.32455e-07 2:-0.166667 3:0.220339 4:0.0833333
    2 1:-0.166667 2:-0.5 3:0.0169491 4:-0.0833333
    2 1:-0.611111 2:-0.75 3:-0.220339 4:-0.25
    2 1:-0.277778 2:-0.416667 3:0.0847457 4:-4.03573e-08
    2 1:-0.222222 2:-0.166667 3:0.0847457 4:-0.0833333
    2 1:-0.222222 2:-0.25 3:0.0847457 4:-4.03573e-08
    2 1:0.0555554 2:-0.25 3:0.118644 4:-4.03573e-08
    2 1:-0.555556 2:-0.583333 3:-0.322034 4:-0.166667
    2 1:-0.222222 2:-0.333333 3:0.0508474 4:-4.03573e-08
    3 1:0.111111 2:0.0833333 3:0.694915 4:1
    3 1:-0.166667 2:-0.416667 3:0.38983 4:0.5
    3 1:0.555555 2:-0.166667 3:0.661017 4:0.666667
    3 1:0.111111 2:-0.25 3:0.559322 4:0.416667
    3 1:0.222222 2:-0.166667 3:0.627119 4:0.75
    3 1:0.833333 2:-0.166667 3:0.898305 4:0.666667
    3 1:-0.666667 2:-0.583333 3:0.186441 4:0.333333
    3 1:0.666667 2:-0.25 3:0.79661 4:0.416667
    3 1:0.333333 2:-0.583333 3:0.627119 4:0.416667
    3 1:0.611111 2:0.333333 3:0.728813 4:1
    3 1:0.222222 3:0.38983 4:0.583333
    3 1:0.166667 2:-0.416667 3:0.457627 4:0.5
    3 1:0.388889 2:-0.166667 3:0.525424 4:0.666667
    3 1:-0.222222 2:-0.583333 3:0.355932 4:0.583333
    3 1:-0.166667 2:-0.333333 3:0.38983 4:0.916667
    3 1:0.166667 3:0.457627 4:0.833333
    3 1:0.222222 2:-0.166667 3:0.525424 4:0.416667
    3 1:0.888889 2:0.5 3:0.932203 4:0.75
    3 1:0.888889 2:-0.5 3:1 4:0.833333
    3 1:-0.0555556 2:-0.833333 3:0.355932 4:0.166667
    3 1:0.444444 3:0.59322 4:0.833333
    3 1:-0.277778 2:-0.333333 3:0.322034 4:0.583333
    3 1:0.888889 2:-0.333333 3:0.932203 4:0.583333
    3 1:0.111111 2:-0.416667 3:0.322034 4:0.416667
    3 1:0.333333 2:0.0833333 3:0.59322 4:0.666667
    3 1:0.611111 3:0.694915 4:0.416667
    3 1:0.0555554 2:-0.333333 3:0.288136 4:0.416667
    3 1:-1.32455e-07 2:-0.166667 3:0.322034 4:0.416667
    3 1:0.166667 2:-0.333333 3:0.559322 4:0.666667
    3 1:0.611111 2:-0.166667 3:0.627119 4:0.25
    3 1:0.722222 2:-0.333333 3:0.728813 4:0.5
    3 1:1 2:0.5 3:0.830508 4:0.583333
    3 1:0.166667 2:-0.333333 3:0.559322 4:0.75
    3 1:0.111111 2:-0.333333 3:0.38983 4:0.166667
    3 1:-1.32455e-07 2:-0.5 3:0.559322 4:0.0833333
    3 1:0.888889 2:-0.166667 3:0.728813 4:0.833333
    3 1:0.111111 2:0.166667 3:0.559322 4:0.916667
    3 1:0.166667 2:-0.0833334 3:0.525424 4:0.416667
    3 1:-0.0555556 2:-0.166667 3:0.288136 4:0.416667
    3 1:0.444444 2:-0.0833334 3:0.491525 4:0.666667
    3 1:0.333333 2:-0.0833334 3:0.559322 4:0.916667
    3 1:0.444444 2:-0.0833334 3:0.38983 4:0.833333
    3 1:-0.166667 2:-0.416667 3:0.38983 4:0.5
    3 1:0.388889 3:0.661017 4:0.833333
    3 1:0.333333 2:0.0833333 3:0.59322 4:1
    3 1:0.333333 2:-0.166667 3:0.423729 4:0.833333
    3 1:0.111111 2:-0.583333 3:0.355932 4:0.5
    3 1:0.222222 2:-0.166667 3:0.423729 4:0.583333
    3 1:0.0555554 2:0.166667 3:0.491525 4:0.833333
    3 1:-0.111111 2:-0.166667 3:0.38983 4:0.416667 
    View Code
  • 相关阅读:
    SCAU 12新生赛 H 拥挤的华农校巴
    C#实现让CPU占用率曲线听你的指挥 可指定运行核心
    追MM与设计模式的有趣见解
    FTP操作类
    怎么知道页面被放大缩小了
    SerialPort同步和异步数据读取
    Java Web 应用程序转换为 ASP.NET
    ASP.NET中进行消息处理(MSMQ)
    解压缩文件类
    怎样成为优秀的软件模型设计者?
  • 原文地址:https://www.cnblogs.com/wangxiaocvpr/p/5202675.html
Copyright © 2020-2023  润新知