• VGG_19 train_vali.prototxt file


    name: "VGG_ILSVRC_19_layer"

    layer {
      name: "data"
      type: "ImageData"
      top: "data"
      top: "label"
      include {
        phase: TRAIN
      }
     
      image_data_param {
        batch_size: 12
        source: "../../fine_tuning_data/HAT_fineTuning_data/train_data_fineTuning.txt"
        root_folder: "../../fine_tuning_data/HAT_fineTuning_data/train_data/"
      }
    }

    layer {
      name: "data"
      type: "ImageData"
      top: "data"
      top: "label"
      include {
        phase: TEST
      }
      transform_param {
        mirror: false
      }
      image_data_param {
        batch_size: 10
        source: "../../fine_tuning_data/HAT_fineTuning_data/test_data_fineTuning.txt"
        root_folder: "../../fine_tuning_data/HAT_fineTuning_data/test_data/"
      }
    }

    layer {
      bottom:"data"
      top:"conv1_1"
      name:"conv1_1"
      type:"Convolution"
      convolution_param {
        num_output:64
        pad:1
        kernel_size:3
      }
    }
    layer {
      bottom:"conv1_1"
      top:"conv1_1"
      name:"relu1_1"
      type:"ReLU"
    }
    layer {
      bottom:"conv1_1"
      top:"conv1_2"
      name:"conv1_2"
      type:"Convolution"
      convolution_param {
        num_output:64
        pad:1
        kernel_size:3
      }
    }
    layer {
      bottom:"conv1_2"
      top:"conv1_2"
      name:"relu1_2"
      type:"ReLU"
    }
    layer {
      bottom:"conv1_2"
      top:"pool1"
      name:"pool1"
      type:"Pooling"
      pooling_param {
        pool:MAX
        kernel_size:2
        stride:2
      }
    }
    layer {
      bottom:"pool1"
      top:"conv2_1"
      name:"conv2_1"
      type:"Convolution"
      convolution_param {
        num_output:128
        pad:1
        kernel_size:3
      }
    }
    layer {
      bottom:"conv2_1"
      top:"conv2_1"
      name:"relu2_1"
      type:"ReLU"
    }
    layer {
      bottom:"conv2_1"
      top:"conv2_2"
      name:"conv2_2"
      type:"Convolution"
      convolution_param {
        num_output:128
        pad:1
        kernel_size:3
      }
    }
    layer {
      bottom:"conv2_2"
      top:"conv2_2"
      name:"relu2_2"
      type:"ReLU"
    }
    layer {
      bottom:"conv2_2"
      top:"pool2"
      name:"pool2"
      type:"Pooling"
      pooling_param {
        pool:MAX
        kernel_size:2
        stride:2
      }
    }
    layer {
      bottom:"pool2"
      top:"conv3_1"
      name: "conv3_1"
      type:"Convolution"
      convolution_param {
        num_output:256
        pad:1
        kernel_size:3
      }
    }
    layer {
      bottom:"conv3_1"
      top:"conv3_1"
      name:"relu3_1"
      type:"ReLU"
    }
    layer {
      bottom:"conv3_1"
      top:"conv3_2"
      name:"conv3_2"
      type:"Convolution"
      convolution_param {
        num_output:256
        pad:1
        kernel_size:3
      }
    }
    layer {
      bottom:"conv3_2"
      top:"conv3_2"
      name:"relu3_2"
      type:"ReLU"
    }
    layer {
      bottom:"conv3_2"
      top:"conv3_3"
      name:"conv3_3"
      type:"Convolution"
      convolution_param {
        num_output:256
        pad:1
        kernel_size:3
      }
    }
    layer {
      bottom:"conv3_3"
      top:"conv3_3"
      name:"relu3_3"
      type:"ReLU"
    }
    layer {
      bottom:"conv3_3"
      top:"conv3_4"
      name:"conv3_4"
      type:"Convolution"
      convolution_param {
        num_output:256
        pad:1
        kernel_size:3
      }
    }
    layer {
      bottom:"conv3_4"
      top:"conv3_4"
      name:"relu3_4"
      type:"ReLU"
    }
    layer {
      bottom:"conv3_4"
      top:"pool3"
      name:"pool3"
      type:"Pooling"
      pooling_param {
        pool:MAX
        kernel_size: 2
        stride: 2
      }
    }
    layer {
      bottom:"pool3"
      top:"conv4_1"
      name:"conv4_1"
      type:"Convolution"
      convolution_param {
        num_output: 512
        pad: 1
        kernel_size: 3
      }
    }
    layer {
      bottom:"conv4_1"
      top:"conv4_1"
      name:"relu4_1"
      type:"ReLU"
    }
    layer {
      bottom:"conv4_1"
      top:"conv4_2"
      name:"conv4_2"
      type:"Convolution"
      convolution_param {
        num_output: 512
        pad: 1
        kernel_size: 3
      }
    }
    layer {
      bottom:"conv4_2"
      top:"conv4_2"
      name:"relu4_2"
      type:"ReLU"
    }
    layer {
      bottom:"conv4_2"
      top:"conv4_3"
      name:"conv4_3"
      type:"Convolution"
      convolution_param {
        num_output: 512
        pad: 1
        kernel_size: 3
      }
    }
    layer {
      bottom:"conv4_3"
      top:"conv4_3"
      name:"relu4_3"
      type:"ReLU"
    }
    layer {
      bottom:"conv4_3"
      top:"conv4_4"
      name:"conv4_4"
      type:"Convolution"
      convolution_param {
        num_output: 512
        pad: 1
        kernel_size: 3
      }
    }
    layer {
      bottom:"conv4_4"
      top:"conv4_4"
      name:"relu4_4"
      type:"ReLU"
    }
    layer {
      bottom:"conv4_4"
      top:"pool4"
      name:"pool4"
      type:"Pooling"
      pooling_param {
        pool:MAX
        kernel_size: 2
        stride: 2
      }
    }
    layer {
      bottom:"pool4"
      top:"conv5_1"
      name:"conv5_1"
      type:"Convolution"
      convolution_param {
        num_output: 512
        pad: 1
        kernel_size: 3
      }
    }
    layer {
      bottom:"conv5_1"
      top:"conv5_1"
      name:"relu5_1"
      type:"ReLU"
    }
    layer {
      bottom:"conv5_1"
      top:"conv5_2"
      name:"conv5_2"
      type:"Convolution"
      convolution_param {
        num_output: 512
        pad: 1
        kernel_size: 3
      }
    }
    layer {
      bottom:"conv5_2"
      top:"conv5_2"
      name:"relu5_2"
      type:"ReLU"
    }
    layer {
      bottom:"conv5_2"
      top:"conv5_3"
      name:"conv5_3"
      type:"Convolution"
      convolution_param {
        num_output: 512
        pad: 1
        kernel_size: 3
      }
    }
    layer {
      bottom:"conv5_3"
      top:"conv5_3"
      name:"relu5_3"
      type:"ReLU"
    }
    layer {
      bottom:"conv5_3"
      top:"conv5_4"
      name:"conv5_4"
      type:"Convolution"
      convolution_param {
        num_output: 512
        pad: 1
        kernel_size: 3
      }
    }
    layer {
      bottom:"conv5_4"
      top:"conv5_4"
      name:"relu5_4"
      type:"ReLU"
    }
    layer {
      bottom:"conv5_4"
      top:"pool5"
      name:"pool5"
      type:"Pooling"
      pooling_param {
        pool:MAX
        kernel_size: 2
        stride: 2
      }
    }
    layer {
      bottom:"pool5"
      top:"fc6_"
      name:"fc6_"
      type:"InnerProduct"
      inner_product_param {
        num_output: 4096
      }
    }
    layer {
      bottom:"fc6_"
      top:"fc6_"
      name:"relu6"
      type:"ReLU"
    }
    layer {
      bottom:"fc6_"
      top:"fc6_"
      name:"drop6"
      type:"Dropout"
      dropout_param {
        dropout_ratio: 0.5
      }
    }
    layer {
      bottom:"fc6_"
      top:"fc7"
      name:"fc7"
      type:"InnerProduct"
      inner_product_param {
        num_output: 4096
      }
    }
    layer {
      bottom:"fc7"
      top:"fc7"
      name:"relu7"
      type:"ReLU"
    }
    layer {
      bottom:"fc7"
      top:"fc7"
      name:"drop7"
      type:"Dropout"
      dropout_param {
        dropout_ratio: 0.5
      }
    }
    layer {
      bottom:"fc7"
      top:"fc8_"
      name:"fc8_"
      type:"InnerProduct"
      inner_product_param {
        num_output: 27
      }
    }

    layer {
      name: "sigmoid"
      type: "Sigmoid"
      bottom: "fc8_"
      top: "fc8_"
    }

     layer {
       name: "accuracy"
       type: "Accuracy"
       bottom: "fc8_"
       bottom: "label"
       top: "accuracy"
       include {
         phase: TEST
       }
     }

    layer {
      name: "loss"
      type: "EuclideanLoss"
      bottom: "fc8_"
      bottom: "label"
      top: "loss"
    }



  • 相关阅读:
    storm概述
    Mac下python路径
    Frida的安装
    Mac上安装多版本python的手工处理方式
    idea下编写shell脚本并执行
    CTF PWN专用虚拟机
    二叉树输入与存储的问题
    逆向推荐博客(持续更新)
    Kali 爬坑日记
    官宣:从windos服务器迁移到linux
  • 原文地址:https://www.cnblogs.com/wangxiaocvpr/p/5128478.html
Copyright © 2020-2023  润新知