Init signature: pd.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False)
Docstring:
Two-dimensional size-mutable, potentially heterogeneous tabular data
structure with labeled axes (rows and columns). Arithmetic operations
align on both row and column labels. Can be thought of as a dict-like
container for Series objects. The primary pandas data structure
Parameters
----------
data : numpy ndarray (structured or homogeneous), dict, or DataFrame
Dict can contain Series, arrays, constants, or list-like objects
index : Index or array-like
Index to use for resulting frame. Will default to np.arange(n) if
no indexing information part of input data and no index provided
columns : Index or array-like
Column labels to use for resulting frame. Will default to
np.arange(n) if no column labels are provided
dtype : dtype, default None
Data type to force. Only a single dtype is allowed. If None, infer
copy : boolean, default False
Copy data from inputs. Only affects DataFrame / 2d ndarray input
Examples
--------
Constructing DataFrame from a dictionary.
>>> d = {'col1': [1, 2], 'col2': [3, 4]}
>>> df = pd.DataFrame(data=d)
>>> df
col1 col2
0 1 3
1 2 4
Notice that the inferred dtype is int64.
>>> df.dtypes
col1 int64
col2 int64
dtype: object
To enforce a single dtype:
>>> df = pd.DataFrame(data=d, dtype=np.int8)
>>> df.dtypes
col1 int8
col2 int8
dtype: object
Constructing DataFrame from numpy ndarray:
>>> df2 = pd.DataFrame(np.random.randint(low=0, high=10, size=(5, 5)),
... columns=['a', 'b', 'c', 'd', 'e'])
>>> df2
a b c d e
0 2 8 8 3 4
1 4 2 9 0 9
2 1 0 7 8 0
3 5 1 7 1 3
4 6 0 2 4 2
See also
--------
DataFrame.from_records : constructor from tuples, also record arrays
DataFrame.from_dict : from dicts of Series, arrays, or dicts
DataFrame.from_items : from sequence of (key, value) pairs
pandas.read_csv, pandas.read_table, pandas.read_clipboard
File: c:userslenovoanaconda3libsite-packagespandascoreframe.py
Type: type
Subclasses: LongPanel, SparseDataFrame, SubclassedDataFrame