• 【转】Hive安装及使用攻略


    Hive安装及使用攻略

    让Hadoop跑在云端系列文章,介绍了如何整合虚拟化和Hadoop,让Hadoop集群跑在VPS虚拟主机上,通过云向用户提供存储和计算的服务。

    现在硬件越来越便宜,一台非品牌服务器,2颗24核CPU,配48G内存,2T的硬盘,已经降到2万块人民币以下了。这种配置如果简单地放几个web应用,显然是奢侈的浪费。就算是用来实现单节点的hadoop,对计算资源浪费也是非常高的。对于这么高性能的计算机,如何有效利用计算资源,就成为成本控制的一项重要议题了。

    通过虚拟化技术,我们可以将一台服务器,拆分成12台VPS,每台2核CPU,4G内存,40G硬盘,并且支持资源重新分配。多么伟大的技术啊!现在我们有了12个节点的hadoop集群, 让Hadoop跑在云端,让世界加速。

    关于作者:

    • 张丹(Conan), 程序员Java,R,PHP,Javascript
    • weibo:@Conan_Z
    • blog: http://blog.fens.me
    • email: bsspirit@gmail.com

    转载请注明出处:
     http://blog.fens.me/hadoop-hive-intro/

    hadoop-hive

    前言

    Hive是Hadoop一个程序接口,Hive让数据分析人员快速上手,Hive使用了类SQL的语法,Hive让JAVA的世界变得简单而轻巧,Hive让Hadoop普及到了程序员以外的人。

    从Hive开始,让分析师们也能玩转大数据。

    目录

    1. Hive的安装
    2. Hive的基本使用:CRUD
    3. Hive交互式模式
    4. 数据导入
    5. 数据导出
    6. Hive查询HiveQL
    7. Hive视图
    8. Hive分区表

     

    1. Hive的安装

    系统环境
    装好hadoop的环境后,我们可以把Hive装在namenode机器上(c1)。
    hadoop的环境,请参考:让Hadoop跑在云端系列文章RHadoop实践系列之一:Hadoop环境搭建

    下载: hive-0.9.0.tar.gz
    解压到: /home/cos/toolkit/hive-0.9.0

    hive配置

    
    ~ cd /home/cos/toolkit/hive-0.9.0
    ~ cp hive-default.xml.template hive-site.xml
    ~ cp hive-log4j.properties.template hive-log4j.properties
    

    修改hive-site.xml配置文件
    把Hive的元数据存储到MySQL中

    
    ~ vi conf/hive-site.xml
    
    <property>
    <name>javax.jdo.option.ConnectionURL</name>
    <value>jdbc:mysql://c1:3306/hive_metadata?createDatabaseIfNotExist=true</value>
    <description>JDBC connect string for a JDBC metastore</description>
    </property>
    
    <property>
    <name>javax.jdo.option.ConnectionDriverName</name>
    <value>com.mysql.jdbc.Driver</value>
    <description>Driver class name for a JDBC metastore</description>
    </property>
    
    <property>
    <name>javax.jdo.option.ConnectionUserName</name>
    <value>hive</value>
    <description>username to use against metastore database</description>
    </property>
    
    <property>
    <name>javax.jdo.option.ConnectionPassword</name>
    <value>hive</value>
    <description>password to use against metastore database</description>
    </property>
    
    <property>
    <name>hive.metastore.warehouse.dir</name>
    <value>/user/hive/warehouse</value>
    <description>location of default database for the warehouse</description>
    </property>
    

    修改hive-log4j.properties

    #log4j.appender.EventCounter=org.apache.hadoop.metrics.jvm.EventCounter
    log4j.appender.EventCounter=org.apache.hadoop.log.metrics.EventCounter

    设置环境变量

    
    ~ sudo vi /etc/environment
    
    PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/home/cos/toolkit/ant184/bin:/home/cos/toolkit/jdk16/bin:/home/cos/toolkit/maven3/bin:/home/cos/toolkit/hadoop-1.0.3/bin:/home/cos/toolkit/hive-0.9.0/bin"
    
    JAVA_HOME=/home/cos/toolkit/jdk16
    ANT_HOME=/home/cos/toolkit/ant184
    MAVEN_HOME=/home/cos/toolkit/maven3
    
    HADOOP_HOME=/home/cos/toolkit/hadoop-1.0.3
    HIVE_HOME=/home/cos/toolkit/hive-0.9.0
    
    CLASSPATH=/home/cos/toolkit/jdk16/lib/dt.jar:/home/cos/toolkit/jdk16/lib/tools.jar
    

    在hdfs上面,创建目录

    
    $HADOOP_HOME/bin/hadoop fs -mkidr /tmp
    $HADOOP_HOME/bin/hadoop fs -mkidr /user/hive/warehouse
    $HADOOP_HOME/bin/hadoop fs -chmod g+w /tmp
    $HADOOP_HOME/bin/hadoop fs -chmod g+w /user/hive/warehouse
    

    在MySQL中创建数据库

    
    create database hive_metadata;
    grant all on hive_metadata.* to hive@'%' identified by 'hive';
    grant all on hive_metadata.* to hive@localhost identified by 'hive';
    ALTER DATABASE hive_metadata CHARACTER SET latin1;
    

    手动上传mysql的jdbc库到hive/lib

    
    ~ ls /home/cos/toolkit/hive-0.9.0/lib
    mysql-connector-java-5.1.22-bin.jar
    

    启动hive

    
    #启动metastore服务
    ~ bin/hive --service metastore &
    Starting Hive Metastore Server
    
    #启动hiveserver服务
    ~ bin/hive --service hiveserver &
    Starting Hive Thrift Server
    
    #启动hive客户端
    ~ bin/hive shell
    Logging initialized using configuration in file:/root/hive-0.9.0/conf/hive-log4j.properties
    Hive history file=/tmp/root/hive_job_log_root_201211141845_1864939641.txt
    
    hive> show tables
    OK
    

    查询MySQL数据库中的元数据

    
    ~ mysql -uroot -p
    mysql> use hive_metadata;
    Database changed
    
    mysql> show tables;
    +-------------------------+
    | Tables_in_hive_metadata |
    +-------------------------+
    | BUCKETING_COLS          |
    | CDS                     |
    | COLUMNS_V2              |
    | DATABASE_PARAMS         |
    | DBS                     |
    | IDXS                    |
    | INDEX_PARAMS            |
    | PARTITIONS              |
    | PARTITION_KEYS          |
    | PARTITION_KEY_VALS      |
    | PARTITION_PARAMS        |
    | PART_COL_PRIVS          |
    | PART_PRIVS              |
    | SDS                     |
    | SD_PARAMS               |
    | SEQUENCE_TABLE          |
    | SERDES                  |
    | SERDE_PARAMS            |
    | SORT_COLS               |
    | TABLE_PARAMS            |
    | TBLS                    |
    | TBL_COL_PRIVS           |
    | TBL_PRIVS               |
    +-------------------------+
    23 rows in set (0.00 sec)
    

    Hive已经成功安装,下面是hive的使用攻略。

    2. Hive的基本使用

    1. 进入hive控制台

    
    ~ cd /home/cos/toolkit/hive-0.9.0
    
    ~ bin/hive shell
    Logging initialized using configuration in file:/home/cos/toolkit/hive-0.9.0/conf/hive-log4j.properties
    Hive history file=/tmp/cos/hive_job_log_cos_201307160003_95040367.txt
    hive>
    

    新建表

    
    #创建数据(文本以tab分隔)
    ~ vi /home/cos/demo/t_hive.txt
    
    16      2       3
    61      12      13
    41      2       31
    17      21      3
    71      2       31
    1       12      34
    11      2       34
    
    #创建新表
    hive> CREATE TABLE t_hive (a int, b int, c int) ROW FORMAT DELIMITED FIELDS TERMINATED BY '	';
    OK
    Time taken: 0.489 seconds
    
    #导入数据t_hive.txt到t_hive表
    hive> LOAD DATA LOCAL INPATH '/home/cos/demo/t_hive.txt' OVERWRITE INTO TABLE t_hive ;
    Copying data from file:/home/cos/demo/t_hive.txt
    Copying file: file:/home/cos/demo/t_hive.txt
    Loading data to table default.t_hive
    Deleted hdfs://c1.wtmart.com:9000/user/hive/warehouse/t_hive
    OK
    Time taken: 0.397 seconds
    

    查看表和数据

    
    #查看表 
    hive> show tables;
    OK
    t_hive
    Time taken: 0.099 seconds
    
    #正则匹配表名
    hive>show tables '*t*';
    OK
    t_hive
    Time taken: 0.065 seconds
    
    #查看表数据
    hive> select * from t_hive;
    OK
    16      2       3
    61      12      13
    41      2       31
    17      21      3
    71      2       31
    1       12      34
    11      2       34
    Time taken: 0.264 seconds
    
    #查看表结构
    hive> desc t_hive;
    OK
    a       int
    b       int
    c       int
    Time taken: 0.1 seconds
    

    修改表

    
    #增加一个字段
    hive> ALTER TABLE t_hive ADD COLUMNS (new_col String);
    OK
    Time taken: 0.186 seconds
    hive> desc t_hive;
    OK
    a       int
    b       int
    c       int
    new_col string
    Time taken: 0.086 seconds
    
    #重命令表名
    ~ ALTER TABLE t_hive RENAME TO t_hadoop;
    OK
    Time taken: 0.45 seconds
    hive> show tables;
    OK
    t_hadoop
    Time taken: 0.07 seconds
    

    删除表

    
    hive> DROP TABLE t_hadoop;
    OK
    Time taken: 0.767 seconds
    
    hive> show tables;
    OK
    Time taken: 0.064 seconds
    

    3. Hive交互式模式

    • quit,exit:  退出交互式shell
    • reset: 重置配置为默认值
    • set <key>=<value> : 修改特定变量的值(如果变量名拼写错误,不会报错)
    • set :  输出用户覆盖的hive配置变量
    • set -v : 输出所有Hadoop和Hive的配置变量
    • add FILE[S] *, add JAR[S] *, add ARCHIVE[S] * : 添加 一个或多个 file, jar, archives到分布式缓存
    • list FILE[S], list JAR[S], list ARCHIVE[S] : 输出已经添加到分布式缓存的资源。
    • list FILE[S] *, list JAR[S] *,list ARCHIVE[S] * : 检查给定的资源是否添加到分布式缓存
    • delete FILE[S] *,delete JAR[S] *,delete ARCHIVE[S] * : 从分布式缓存删除指定的资源
    • ! <command> :  从Hive shell执行一个shell命令
    • dfs <dfs command> :  从Hive shell执行一个dfs命令
    • <query string> : 执行一个Hive 查询,然后输出结果到标准输出
    • source FILE <filepath>:  在CLI里执行一个hive脚本文件

    4. 数据导入

    还以刚才的t_hive为例。

    #创建表结构
    hive> CREATE TABLE t_hive (a int, b int, c int) ROW FORMAT DELIMITED FIELDS TERMINATED BY '	';
    

    从操作本地文件系统加载数据(LOCAL)

    
    hive> LOAD DATA LOCAL INPATH '/home/cos/demo/t_hive.txt' OVERWRITE INTO TABLE t_hive ;
    Copying data from file:/home/cos/demo/t_hive.txt
    Copying file: file:/home/cos/demo/t_hive.txt
    Loading data to table default.t_hive
    Deleted hdfs://c1.wtmart.com:9000/user/hive/warehouse/t_hive
    OK
    Time taken: 0.612 seconds
    
    #在HDFS中查找刚刚导入的数据
    ~ hadoop fs -cat /user/hive/warehouse/t_hive/t_hive.txt
    
    16      2       3
    61      12      13
    41      2       31
    17      21      3
    71      2       31
    1       12      34
    11      2       34
    

    从HDFS加载数据

    
    创建表t_hive2
    hive> CREATE TABLE t_hive2 (a int, b int, c int) ROW FORMAT DELIMITED FIELDS TERMINATED BY '	';
    
    #从HDFS加载数据
    hive> LOAD DATA INPATH '/user/hive/warehouse/t_hive/t_hive.txt' OVERWRITE INTO TABLE t_hive2;
    Loading data to table default.t_hive2
    Deleted hdfs://c1.wtmart.com:9000/user/hive/warehouse/t_hive2
    OK
    Time taken: 0.325 seconds
    
    #查看数据
    hive> select * from t_hive2;
    OK
    16      2       3
    61      12      13
    41      2       31
    17      21      3
    71      2       31
    1       12      34
    11      2       34
    Time taken: 0.287 seconds
    

    从其他表导入数据

    
    hive> INSERT OVERWRITE TABLE t_hive2 SELECT * FROM t_hive ;
    
    Total MapReduce jobs = 2
    Launching Job 1 out of 2
    Number of reduce tasks is set to 0 since there's no reduce operator
    Starting Job = job_201307131407_0002, Tracking URL = http://c1.wtmart.com:50030/jobdetails.jsp?jobid=job_201307131407_0002
    Kill Command = /home/cos/toolkit/hadoop-1.0.3/libexec/../bin/hadoop job  -Dmapred.job.tracker=hdfs://c1.wtmart.com:9001 -kill job_201307131407_0002
    Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
    2013-07-16 10:32:41,979 Stage-1 map = 0%,  reduce = 0%
    2013-07-16 10:32:48,034 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.03 sec
    2013-07-16 10:32:49,050 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.03 sec
    2013-07-16 10:32:50,068 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.03 sec
    2013-07-16 10:32:51,082 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.03 sec
    2013-07-16 10:32:52,093 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.03 sec
    2013-07-16 10:32:53,102 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.03 sec
    2013-07-16 10:32:54,112 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 1.03 sec
    MapReduce Total cumulative CPU time: 1 seconds 30 msec
    Ended Job = job_201307131407_0002
    Ended Job = -314818888, job is filtered out (removed at runtime).
    Moving data to: hdfs://c1.wtmart.com:9000/tmp/hive-cos/hive_2013-07-16_10-32-31_323_5732404975764014154/-ext-10000
    Loading data to table default.t_hive2
    Deleted hdfs://c1.wtmart.com:9000/user/hive/warehouse/t_hive2
    Table default.t_hive2 stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 56, raw_data_size: 0]
    7 Rows loaded to t_hive2
    MapReduce Jobs Launched:
    Job 0: Map: 1   Cumulative CPU: 1.03 sec   HDFS Read: 273 HDFS Write: 56 SUCCESS
    Total MapReduce CPU Time Spent: 1 seconds 30 msec
    OK
    Time taken: 23.227 seconds
    
    hive> select * from t_hive2;
    OK
    16      2       3
    61      12      13
    41      2       31
    17      21      3
    71      2       31
    1       12      34
    11      2       34
    Time taken: 0.134 seconds
    

    创建表并从其他表导入数据

    
    #删除表
    hive> DROP TABLE t_hive;
    
    #创建表并从其他表导入数据
    hive> CREATE TABLE t_hive AS SELECT * FROM t_hive2 ;
    
    Total MapReduce jobs = 2
    Launching Job 1 out of 2
    Number of reduce tasks is set to 0 since there's no reduce operator
    Starting Job = job_201307131407_0003, Tracking URL = http://c1.wtmart.com:50030/jobdetails.jsp?jobid=job_201307131407_0003
    Kill Command = /home/cos/toolkit/hadoop-1.0.3/libexec/../bin/hadoop job  -Dmapred.job.tracker=hdfs://c1.wtmart.com:9001 -kill job_201307131407_0003
    Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
    2013-07-16 10:36:48,612 Stage-1 map = 0%,  reduce = 0%
    2013-07-16 10:36:54,648 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.13 sec
    2013-07-16 10:36:55,657 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.13 sec
    2013-07-16 10:36:56,666 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.13 sec
    2013-07-16 10:36:57,673 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.13 sec
    2013-07-16 10:36:58,683 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.13 sec
    2013-07-16 10:36:59,691 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 1.13 sec
    MapReduce Total cumulative CPU time: 1 seconds 130 msec
    Ended Job = job_201307131407_0003
    Ended Job = -670956236, job is filtered out (removed at runtime).
    Moving data to: hdfs://c1.wtmart.com:9000/tmp/hive-cos/hive_2013-07-16_10-36-39_986_1343249562812540343/-ext-10001
    Moving data to: hdfs://c1.wtmart.com:9000/user/hive/warehouse/t_hive
    Table default.t_hive stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 56, raw_data_size: 0]
    7 Rows loaded to hdfs://c1.wtmart.com:9000/tmp/hive-cos/hive_2013-07-16_10-36-39_986_1343249562812540343/-ext-10000
    MapReduce Jobs Launched:
    Job 0: Map: 1   Cumulative CPU: 1.13 sec   HDFS Read: 272 HDFS Write: 56 SUCCESS
    Total MapReduce CPU Time Spent: 1 seconds 130 msec
    OK
    Time taken: 20.13 seconds
    
    hive> select * from t_hive;
    OK
    16      2       3
    61      12      13
    41      2       31
    17      21      3
    71      2       31
    1       12      34
    11      2       34
    Time taken: 0.109 seconds
    

    仅复制表结构不导数据

    
    hive> CREATE TABLE t_hive3 LIKE t_hive;
    hive> select * from t_hive3;
    OK
    Time taken: 0.077 seconds
    

    从MySQL数据库导入数据
    我们将在介绍Sqoop时讲。

    5. 数据导出

    从HDFS复制到HDFS其他位置

    
    ~ hadoop fs -cp /user/hive/warehouse/t_hive /
    
    ~ hadoop fs -ls /t_hive
    Found 1 items
    -rw-r--r--   1 cos supergroup         56 2013-07-16 10:41 /t_hive/000000_0
    
    ~ hadoop fs -cat /t_hive/000000_0
    1623
    611213
    41231
    17213
    71231
    11234
    11234
    

    通过Hive导出到本地文件系统

    
    hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/t_hive' SELECT * FROM t_hive;
    Total MapReduce jobs = 1
    Launching Job 1 out of 1
    Number of reduce tasks is set to 0 since there's no reduce operator
    Starting Job = job_201307131407_0005, Tracking URL = http://c1.wtmart.com:50030/jobdetails.jsp?jobid=job_201307131407_0005
    Kill Command = /home/cos/toolkit/hadoop-1.0.3/libexec/../bin/hadoop job  -Dmapred.job.tracker=hdfs://c1.wtmart.com:9001 -kill job_201307131407_0005
    Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
    2013-07-16 10:46:24,774 Stage-1 map = 0%,  reduce = 0%
    2013-07-16 10:46:30,823 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 0.87 sec
    2013-07-16 10:46:31,833 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 0.87 sec
    2013-07-16 10:46:32,844 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 0.87 sec
    2013-07-16 10:46:33,856 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 0.87 sec
    2013-07-16 10:46:34,865 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 0.87 sec
    2013-07-16 10:46:35,873 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 0.87 sec
    2013-07-16 10:46:36,884 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 0.87 sec
    MapReduce Total cumulative CPU time: 870 msec
    Ended Job = job_201307131407_0005
    Copying data to local directory /tmp/t_hive
    Copying data to local directory /tmp/t_hive
    7 Rows loaded to /tmp/t_hive
    MapReduce Jobs Launched:
    Job 0: Map: 1   Cumulative CPU: 0.87 sec   HDFS Read: 271 HDFS Write: 56 SUCCESS
    Total MapReduce CPU Time Spent: 870 msec
    OK
    Time taken: 23.369 seconds
    
    #查看本地操作系统
    hive> ! cat /tmp/t_hive/000000_0;
    hive> 1623
    611213
    41231
    17213
    71231
    11234
    11234
    
    

    6. Hive查询HiveQL

    注:以下代码将去掉map,reduce的日志输出部分。

    普通查询:排序,列别名,嵌套子查询

    
    hive> FROM (
        >   SELECT b,c as c2 FROM t_hive
        > ) t
        > SELECT t.b, t.c2
        > WHERE b>2
        > LIMIT 2;
    12      13
    21      3
    

    连接查询:JOIN

    
    hive> SELECT t1.a,t1.b,t2.a,t2.b
        > FROM t_hive t1 JOIN t_hive2 t2 on t1.a=t2.a
        > WHERE t1.c>10;
    
    1       12      1       12
    11      2       11      2
    41      2       41      2
    61      12      61      12
    71      2       71      2
    

    聚合查询1:count, avg

    
    hive> SELECT count(*), avg(a) FROM t_hive;
    7       31.142857142857142
    

    聚合查询2:count, distinct

    
    hive> SELECT count(DISTINCT b) FROM t_hive;
    3
    

    聚合查询3:GROUP BY, HAVING

    
    #GROUP BY
    hive> SELECT avg(a),b,sum(c) FROM t_hive GROUP BY b,c
    16.0    2       3
    56.0    2       62
    11.0    2       34
    61.0    12      13
    1.0     12      34
    17.0    21      3
    
    #HAVING
    hive> SELECT avg(a),b,sum(c) FROM t_hive GROUP BY b,c HAVING sum(c)>30
    56.0    2       62
    11.0    2       34
    1.0     12      34
    

    7. Hive视图

    Hive视图和数据库视图的概念是一样的,我们还以t_hive为例。

    
    hive> CREATE VIEW v_hive AS SELECT a,b FROM t_hive where c>30;
    hive> select * from v_hive;
    41      2
    71      2
    1       12
    11      2
    

    删除视图

    
    hive> DROP VIEW IF EXISTS v_hive;
    OK
    Time taken: 0.495 seconds
    

    8. Hive分区表

    分区表是数据库的基本概念,但很多时候数据量不大,我们完全用不到分区表。Hive是一种OLAP数据仓库软件,涉及的数据量是非常大的,所以分区表在这个场景就显得非常重要!!

    下面我们重新定义一个数据表结构:t_hft

    创建数据

    
    ~ vi /home/cos/demo/t_hft_20130627.csv
    000001,092023,9.76
    000002,091947,8.99
    000004,092002,9.79
    000005,091514,2.2
    000001,092008,9.70
    000001,092059,9.45
    
    ~ vi /home/cos/demo/t_hft_20130628.csv
    000001,092023,9.76
    000002,091947,8.99
    000004,092002,9.79
    000005,091514,2.2
    000001,092008,9.70
    000001,092059,9.45
    

    创建数据表

    
    DROP TABLE IF EXISTS t_hft;
    CREATE TABLE t_hft(
    SecurityID STRING,
    tradeTime STRING,
    PreClosePx DOUBLE
    ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';
    

    创建分区数据表
    根据业务:按天和股票ID进行分区设计

    
    DROP TABLE IF EXISTS t_hft;
    CREATE TABLE t_hft(
    SecurityID STRING,
    tradeTime STRING,
    PreClosePx DOUBLE
    ) PARTITIONED BY (tradeDate INT)
    ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';
    

    导入数据

    
    #20130627
    hive> LOAD DATA LOCAL INPATH '/home/cos/demo/t_hft_20130627.csv' OVERWRITE INTO TABLE t_hft PARTITION (tradeDate=20130627);
    Copying data from file:/home/cos/demo/t_hft_20130627.csv
    Copying file: file:/home/cos/demo/t_hft_20130627.csv
    Loading data to table default.t_hft partition (tradedate=20130627)
    
    #20130628
    hive> LOAD DATA LOCAL INPATH '/home/cos/demo/t_hft_20130628.csv' OVERWRITE INTO TABLE t_hft PARTITION (tradeDate=20130628);
    Copying data from file:/home/cos/demo/t_hft_20130628.csv
    Copying file: file:/home/cos/demo/t_hft_20130628.csv
    Loading data to table default.t_hft partition (tradedate=20130628)
    
    

    查看分区表

    
    hive> SHOW PARTITIONS t_hft;
    tradedate=20130627
    tradedate=20130628
    Time taken: 0.082 seconds
    

    查询数据

    
    hive> select * from t_hft where securityid='000001';
    000001  092023  9.76    20130627
    000001  092008  9.7     20130627
    000001  092059  9.45    20130627
    000001  092023  9.76    20130628
    000001  092008  9.7     20130628
    000001  092059  9.45    20130628
    
    hive> select * from t_hft where tradedate=20130627 and PreClosePx<9;
    000002  091947  8.99    20130627
    000005  091514  2.2     20130627
    

    Hive基于使用完成,这些都是日常的操作。后面我会继续讲一下,HiveQL优化及Hive的运维。

  • 相关阅读:
    查看Oracle的redo日志切换频率
    MySQL 5.6 my.cnf 参数说明(转)
    MySQL性能优化之参数配置
    centos7安装mysql(MariaDB)
    centos6.5安装sendmail
    zabbix安装配置
    linux设置安全连接设置(私钥)
    linux本机root账户无法登录,但是远程ssh可登录
    ORACLE AWR
    maven 依赖(依赖范围,聚合,继承等)
  • 原文地址:https://www.cnblogs.com/wangsongbai/p/9122879.html
Copyright © 2020-2023  润新知