package movies
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object Movice {
def main(args: Array[String]): Unit = {
val cof = new SparkConf ()
.setAppName ( this.getClass.getSimpleName )
.setMaster ( "local[1]" )
val sc = new SparkContext ( cof )
val users1 = sc.textFile ( "D:\学习笔记\资料汇总\day02\资料\热门电影的数据\users.dat" )
val movies1 = sc.textFile ( "D:\学习笔记\资料汇总\day02\资料\热门电影的数据\movies.dat" )
val ratings1 = sc.textFile ( "D:\学习笔记\资料汇总\day02\资料\热门电影的数据\ratings.dat" )
//1:评分(平均分)最高的10部电影 (moviceId, (userId, rating))
val ratings2: RDD[(Int, (String, Int))] = ratings1.map ( tp => {
val splits: Array[String] = tp.split ( "::" )
val userId = splits ( 0 )
val moviceId = splits ( 1 ).toInt
val rating = splits ( 2 ).toInt
(moviceId, (userId, rating))
} )
//(moviceId, (userId, 1))
val rating4:RDD[(Int,(Int,Int))]=ratings2.map(tp=>{
val rating=tp._2._2
val moviceId=tp._1
(moviceId,(rating,1))
})
val group2: RDD[(Int, Iterable[(Int, Int)])] =rating4.groupByKey()
//聚合(movid,rtingsum,counsum)
val rantresult1: RDD[(Int, Int, Int)] = group2.map(tp=>{
val rantsum=tp._2.map(tp=>tp._1).sum
val countsum=tp._2.map(_._2).sum
(tp._1,rantsum,countsum)
})
// //取平均值
// val ranresult2=rantresult1.map(tp=>{
// (tp._1,tp._2/tp._3)
// }).sortBy(-_._2).take(10).foreach(println)
//2:18 - 24 岁的男性年轻人 最喜欢看的10部电影
val users2: RDD[(Int, (String, Int))] = users1.map ( tp => {
val splits: Array[String] = tp.split ( "::" )
val userId = splits ( 0 ).toInt
val gender = splits ( 1 )
val age = splits ( 2 ).toInt
(userId, (gender, age))
} )
val ratings3: RDD[(Int, String)] = ratings1.map ( tp => {
val splits: Array[String] = tp.split ( "::" )
val userId = splits ( 0 ).toInt
val moviceId = splits ( 1 )
(userId, moviceId)
} )
// users2.join ( ratings3 ).filter ( tp => {
// tp._2._1._1.equals ( "M" )
// tp._2._1._2 >= 18 && tp._2._1._2 <= 24
// } ).map ( tp => (
// tp._2._2, 1)
// ).reduceByKey ( _ + _ ).sortBy ( -_._2 ).take ( 10 ).foreach ( println )
//3:女性观看次数最多的10部电影名称及观看次数
users2.join(ratings3).filter(tp=>{
tp._2._1._1.equals("F")
}).map(tp=>(
tp._2._2,1
)).reduceByKey(_+_).sortBy(-_._2).take(10).foreach(println)
sc.stop()
}
}