本节大纲:
- 模块介绍
- time &datetime模块
- random
- shutil
- shelve
- xml处理
- yaml处理
- configparser
- hashlib
- subprocess
- logging模块
- re正则表达式
模块,用一砣代码实现了某个功能的代码集合。
类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合。而对于一个复杂的功能来,可能需要多个函数才能完成(函数又可以在不同的.py文件中),n个 .py 文件组成的代码集合就称为模块。
如:os 是系统相关的模块;file是文件操作相关的模块
模块分为三种:
- 自定义模块
- 内置标准模块(又称标准库)
- 开源模块
自定义模块 和开源模块的使用参考 http://www.cnblogs.com/wupeiqi/articles/4963027.html
time & datetime模块
1 #_*_coding:utf-8_*_ 2 __author__ = 'Alex Li' 3 4 import time 5 6 # print(time.clock()) #返回处理器时间,3.3开始已废弃 , 改成了time.process_time()测量处理器运算时间,不包括sleep时间,不稳定,mac上测不出来 7 # print(time.altzone) #返回与utc时间的时间差,以秒计算 8 # print(time.asctime()) #返回时间格式"Fri Aug 19 11:14:16 2016", 9 # print(time.localtime()) #返回本地时间 的struct time对象格式 10 # print(time.gmtime(time.time()-800000)) #返回utc时间的struc时间对象格式 11 12 # print(time.asctime(time.localtime())) #返回时间格式"Fri Aug 19 11:14:16 2016", 13 #print(time.ctime()) #返回Fri Aug 19 12:38:29 2016 格式, 同上 14 15 16 # 日期字符串 转成 时间戳 17 # string_2_struct = time.strptime("2016/05/22","%Y/%m/%d") #将 日期字符串 转成 struct时间对象格式 18 # print(string_2_struct) 19 # # 20 # struct_2_stamp = time.mktime(string_2_struct) #将struct时间对象转成时间戳 21 # print(struct_2_stamp) 22 23 24 #将时间戳转为字符串格式 25 # print(time.gmtime(time.time()-86640)) #将utc时间戳转换成struct_time格式 26 # print(time.strftime("%Y-%m-%d %H:%M:%S",time.gmtime()) ) #将utc struct_time格式转成指定的字符串格式 27 28 29 #时间加减 30 import datetime 31 32 # print(datetime.datetime.now()) #返回 2016-08-19 12:47:03.941925 33 #print(datetime.date.fromtimestamp(time.time()) ) # 时间戳直接转成日期格式 2016-08-19 34 # print(datetime.datetime.now() ) 35 # print(datetime.datetime.now() + datetime.timedelta(3)) #当前时间+3天 36 # print(datetime.datetime.now() + datetime.timedelta(-3)) #当前时间-3天 37 # print(datetime.datetime.now() + datetime.timedelta(hours=3)) #当前时间+3小时 38 # print(datetime.datetime.now() + datetime.timedelta(minutes=30)) #当前时间+30分 39 40 41 # 42 # c_time = datetime.datetime.now() 43 # print(c_time.replace(minute=3,hour=2)) #时间替换
Directive | Meaning | Notes |
---|---|---|
%a |
Locale’s abbreviated weekday name. | |
%A |
Locale’s full weekday name. | |
%b |
Locale’s abbreviated month name. | |
%B |
Locale’s full month name. | |
%c |
Locale’s appropriate date and time representation. | |
%d |
Day of the month as a decimal number [01,31]. | |
%H |
Hour (24-hour clock) as a decimal number [00,23]. | |
%I |
Hour (12-hour clock) as a decimal number [01,12]. | |
%j |
Day of the year as a decimal number [001,366]. | |
%m |
Month as a decimal number [01,12]. | |
%M |
Minute as a decimal number [00,59]. | |
%p |
Locale’s equivalent of either AM or PM. | (1) |
%S |
Second as a decimal number [00,61]. | (2) |
%U |
Week number of the year (Sunday as the first day of the week) as a decimal number [00,53]. All days in a new year preceding the first Sunday are considered to be in week 0. | (3) |
%w |
Weekday as a decimal number [0(Sunday),6]. | |
%W |
Week number of the year (Monday as the first day of the week) as a decimal number [00,53]. All days in a new year preceding the first Monday are considered to be in week 0. | (3) |
%x |
Locale’s appropriate date representation. | |
%X |
Locale’s appropriate time representation. | |
%y |
Year without century as a decimal number [00,99]. | |
%Y |
Year with century as a decimal number. | |
%z |
Time zone offset indicating a positive or negative time difference from UTC/GMT of the form +HHMM or -HHMM, where H represents decimal hour digits and M represents decimal minute digits [-23:59, +23:59]. | |
%Z |
Time zone name (no characters if no time zone exists). | |
%% |
A literal '%' character. |
random模块
随机数
1 mport random 2 print random.random() 3 print random.randint(1,2) 4 print random.randrange(1,10)
生成随机验证码
1 import random 2 checkcode = '' 3 for i in range(4): 4 current = random.randrange(0,4) 5 if current != i: 6 temp = chr(random.randint(65,90)) 7 else: 8 temp = random.randint(0,9) 9 checkcode += str(temp) 10 print checkcode
shutil 模块
直接参考 http://www.cnblogs.com/wupeiqi/articles/4963027.html
shelve 模块
1 import shelve 2 3 d = shelve.open('shelve_test') #打开一个文件 4 5 class Test(object): 6 def __init__(self,n): 7 self.n = n 8 9 10 t = Test(123) 11 t2 = Test(123334) 12 13 name = ["alex","rain","test"] 14 d["test"] = name #持久化列表 15 d["t1"] = t #持久化类 16 d["t2"] = t2 17 18 d.close()
xml处理模块
xml是实现不同语言或程序之间进行数据交换的协议,跟json差不多,但json使用起来更简单,不过,古时候,在json还没诞生的黑暗年代,大家只能选择用xml呀,至今很多传统公司如金融行业的很多系统的接口还主要是xml。
xml的格式如下,就是通过<>节点来区别数据结构的:
<?xml version="1.0"?> <data> <country name="Liechtenstein"> <rank updated="yes">2</rank> <year>2008</year> <gdppc>141100</gdppc> <neighbor name="Austria" direction="E"/> <neighbor name="Switzerland" direction="W"/> </country> <country name="Singapore"> <rank updated="yes">5</rank> <year>2011</year> <gdppc>59900</gdppc> <neighbor name="Malaysia" direction="N"/> </country> <country name="Panama"> <rank updated="yes">69</rank> <year>2011</year> <gdppc>13600</gdppc> <neighbor name="Costa Rica" direction="W"/> <neighbor name="Colombia" direction="E"/> </country> </data>
xml协议在各个语言里的都 是支持的,在python中可以用以下模块操作xml
1 import xml.etree.ElementTree as ET 2 3 tree = ET.parse("xmltest.xml") 4 root = tree.getroot() 5 print(root.tag) 6 7 #遍历xml文档 8 for child in root: 9 print(child.tag, child.attrib) 10 for i in child: 11 print(i.tag,i.text) 12 13 #只遍历year 节点 14 for node in root.iter('year'): 15 print(node.tag,node.text)
修改和删除xml文档内容
1 import xml.etree.ElementTree as ET 2 3 tree = ET.parse("xmltest.xml") 4 root = tree.getroot() 5 6 #修改 7 for node in root.iter('year'): 8 new_year = int(node.text) + 1 9 node.text = str(new_year) 10 node.set("updated","yes") 11 12 tree.write("xmltest.xml") 13 14 15 #删除node 16 for country in root.findall('country'): 17 rank = int(country.find('rank').text) 18 if rank > 50: 19 root.remove(country) 20 21 tree.write('output.xml')
自己创建xml文档
1 import xml.etree.ElementTree as ET 2 3 4 new_xml = ET.Element("namelist") 5 name = ET.SubElement(new_xml,"name",attrib={"enrolled":"yes"}) 6 age = ET.SubElement(name,"age",attrib={"checked":"no"}) 7 sex = ET.SubElement(name,"sex") 8 sex.text = '33' 9 name2 = ET.SubElement(new_xml,"name",attrib={"enrolled":"no"}) 10 age = ET.SubElement(name2,"age") 11 age.text = '19' 12 13 et = ET.ElementTree(new_xml) #生成文档对象 14 et.write("test.xml", encoding="utf-8",xml_declaration=True) 15 16 ET.dump(new_xml) #打印生成的格式
PyYAML模块
Python也可以很容易的处理ymal文档格式,只不过需要安装一个模块,参考文档:http://pyyaml.org/wiki/PyYAMLDocumentation
ConfigParser模块
用于生成和修改常见配置文档,当前模块的名称在 python 3.x 版本中变更为 configparser。
来看一个好多软件的常见文档格式如下
[DEFAULT] ServerAliveInterval = 45 Compression = yes CompressionLevel = 9 ForwardX11 = yes [bitbucket.org] User = hg [topsecret.server.com] Port = 50022 ForwardX11 = no
如果想用python生成一个这样的文档怎么做呢?
import configparser config = configparser.ConfigParser() config["DEFAULT"] = {'ServerAliveInterval': '45', 'Compression': 'yes', 'CompressionLevel': '9'} config['bitbucket.org'] = {} config['bitbucket.org']['User'] = 'hg' config['topsecret.server.com'] = {} topsecret = config['topsecret.server.com'] topsecret['Host Port'] = '50022' # mutates the parser topsecret['ForwardX11'] = 'no' # same here config['DEFAULT']['ForwardX11'] = 'yes' with open('example.ini', 'w') as configfile: config.write(configfile)
写完了还可以再读出来哈。
>>> import configparser >>> config = configparser.ConfigParser() >>> config.sections() [] >>> config.read('example.ini') ['example.ini'] >>> config.sections() ['bitbucket.org', 'topsecret.server.com'] >>> 'bitbucket.org' in config True >>> 'bytebong.com' in config False >>> config['bitbucket.org']['User'] 'hg' >>> config['DEFAULT']['Compression'] 'yes' >>> topsecret = config['topsecret.server.com'] >>> topsecret['ForwardX11'] 'no' >>> topsecret['Port'] '50022' >>> for key in config['bitbucket.org']: print(key) ... user compressionlevel serveraliveinterval compression forwardx11 >>> config['bitbucket.org']['ForwardX11'] 'yes'
configparser增删改查语法
[section1] k1 = v1 k2:v2 [section2] k1 = v1 import ConfigParser config = ConfigParser.ConfigParser() config.read('i.cfg') # ########## 读 ########## #secs = config.sections() #print secs #options = config.options('group2') #print options #item_list = config.items('group2') #print item_list #val = config.get('group1','key') #val = config.getint('group1','key') # ########## 改写 ########## #sec = config.remove_section('group1') #config.write(open('i.cfg', "w")) #sec = config.has_section('wupeiqi') #sec = config.add_section('wupeiqi') #config.write(open('i.cfg', "w")) #config.set('group2','k1',11111) #config.write(open('i.cfg', "w")) #config.remove_option('group2','age') #config.write(open('i.cfg', "w"))
hashlib模块
用于加密相关的操作,3.x里代替了md5模块和sha模块,主要提供 SHA1, SHA224, SHA256, SHA384, SHA512 ,MD5 算法
import hashlib m = hashlib.md5() m.update(b"Hello") m.update(b"It's me") print(m.digest()) m.update(b"It's been a long time since last time we ...") print(m.digest()) #2进制格式hash print(len(m.hexdigest())) #16进制格式hash ''' def digest(self, *args, **kwargs): # real signature unknown """ Return the digest value as a string of binary data. """ pass def hexdigest(self, *args, **kwargs): # real signature unknown """ Return the digest value as a string of hexadecimal digits. """ pass ''' import hashlib # ######## md5 ######## hash = hashlib.md5() hash.update('admin') print(hash.hexdigest()) # ######## sha1 ######## hash = hashlib.sha1() hash.update('admin') print(hash.hexdigest()) # ######## sha256 ######## hash = hashlib.sha256() hash.update('admin') print(hash.hexdigest()) # ######## sha384 ######## hash = hashlib.sha384() hash.update('admin') print(hash.hexdigest()) # ######## sha512 ######## hash = hashlib.sha512() hash.update('admin') print(hash.hexdigest())
还不够吊?python 还有一个 hmac 模块,它内部对我们创建 key 和 内容 再进行处理然后再加密
import hmac h = hmac.new('wueiqi') h.update('hellowo') print h.hexdigest()
更多关于md5,sha1,sha256等介绍的文章看这里https://www.tbs-certificates.co.uk/FAQ/en/sha256.html
很多程序都有记录日志的需求,并且日志中包含的信息即有正常的程序访问日志,还可能有错误、警告等信息输出,python的logging模块提供了标准的日志接口,你可以通过它存储各种格式的日志,logging的日志可以分为 debug()
, info()
, warning()
, error()
and critical() 5个级别,
下面我们看一下怎么用。
最简单用法
import logging logging.warning("user [alex] attempted wrong password more than 3 times") logging.critical("server is down") #输出 WARNING:root:user [alex] attempted wrong password more than 3 times CRITICAL:root:server is down
看一下这几个日志级别分别代表什么意思
Level | When it’s used |
---|---|
DEBUG |
Detailed information, typically of interest only when diagnosing problems. |
INFO |
Confirmation that things are working as expected. |
WARNING |
An indication that something unexpected happened, or indicative of some problem in the near future (e.g. ‘disk space low’). The software is still working as expected. |
ERROR |
Due to a more serious problem, the software has not been able to perform some function. |
CRITICAL |
A serious error, indicating that the program itself may be unable to continue running. |
如果想把日志写到文件里,也很简单
import logging logging.basicConfig(filename='example.log',level=logging.INFO) logging.debug('This message should go to the log file') logging.info('So should this') logging.warning('And this, too')
其中下面这句中的level=loggin.INFO意思是,把日志纪录级别设置为INFO,也就是说,只有比日志是INFO或比INFO级别更高的日志才会被纪录到文件里,在这个例子, 第一条日志是不会被纪录的,如果希望纪录debug的日志,那把日志级别改成DEBUG就行了。
logging.basicConfig(filename='example.log',level=logging.INFO)
感觉上面的日志格式忘记加上时间啦,日志不知道时间怎么行呢,下面就来加上!
1 import logging 2 logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p') 3 logging.warning('is when this event was logged.') 4 5 #输出 6 12/12/2010 11:46:36 AM is when this event was logged.
日志格式
%(name)s |
Logger的名字 |
%(levelno)s |
数字形式的日志级别 |
%(levelname)s |
文本形式的日志级别 |
%(pathname)s |
调用日志输出函数的模块的完整路径名,可能没有 |
%(filename)s |
调用日志输出函数的模块的文件名 |
%(module)s |
调用日志输出函数的模块名 |
%(funcName)s |
调用日志输出函数的函数名 |
%(lineno)d |
调用日志输出函数的语句所在的代码行 |
%(created)f |
当前时间,用UNIX标准的表示时间的浮 点数表示 |
%(relativeCreated)d |
输出日志信息时的,自Logger创建以 来的毫秒数 |
%(asctime)s |
字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒 |
%(thread)d |
线程ID。可能没有 |
%(threadName)s |
线程名。可能没有 |
%(process)d |
进程ID。可能没有 |
%(message)s |
用户输出的消息 |
如果想同时把log打印在屏幕和文件日志里,就需要了解一点复杂的知识 了
Python 使用logging模块记录日志涉及四个主要类,使用官方文档中的概括最为合适:
logger提供了应用程序可以直接使用的接口;
handler将(logger创建的)日志记录发送到合适的目的输出;
filter提供了细度设备来决定输出哪条日志记录;
formatter决定日志记录的最终输出格式。
logger
每个程序在输出信息之前都要获得一个Logger。Logger通常对应了程序的模块名,比如聊天工具的图形界面模块可以这样获得它的Logger:
LOG=logging.getLogger(”chat.gui”)
而核心模块可以这样:
LOG=logging.getLogger(”chat.kernel”)
Logger.setLevel(lel):指定最低的日志级别,低于lel的级别将被忽略。debug是最低的内置级别,critical为最高
Logger.addFilter(filt)、Logger.removeFilter(filt):添加或删除指定的filter
Logger.addHandler(hdlr)、Logger.removeHandler(hdlr):增加或删除指定的handler
Logger.debug()、Logger.info()、Logger.warning()、Logger.error()、Logger.critical():可以设置的日志级别
handler
handler对象负责发送相关的信息到指定目的地。Python的日志系统有多种Handler可以使用。有些Handler可以把信息输出到控制台,有些Logger可以把信息输出到文件,还有些 Handler可以把信息发送到网络上。如果觉得不够用,还可以编写自己的Handler。可以通过addHandler()方法添加多个多handler
Handler.setLevel(lel):指定被处理的信息级别,低于lel级别的信息将被忽略
Handler.setFormatter():给这个handler选择一个格式
Handler.addFilter(filt)、Handler.removeFilter(filt):新增或删除一个filter对象
每个Logger可以附加多个Handler。接下来我们就来介绍一些常用的Handler:
1) logging.StreamHandler
使用这个Handler可以向类似与sys.stdout或者sys.stderr的任何文件对象(file object)输出信息。它的构造函数是:
StreamHandler([strm])
其中strm参数是一个文件对象。默认是sys.stderr
2) logging.FileHandler
和StreamHandler类似,用于向一个文件输出日志信息。不过FileHandler会帮你打开这个文件。它的构造函数是:
FileHandler(filename[,mode])
filename是文件名,必须指定一个文件名。
mode是文件的打开方式。参见Python内置函数open()的用法。默认是’a',即添加到文件末尾。
3) logging.handlers.RotatingFileHandler
这个Handler类似于上面的FileHandler,但是它可以管理文件大小。当文件达到一定大小之后,它会自动将当前日志文件改名,然后创建 一个新的同名日志文件继续输出。比如日志文件是chat.log。当chat.log达到指定的大小之后,RotatingFileHandler自动把 文件改名为chat.log.1。不过,如果chat.log.1已经存在,会先把chat.log.1重命名为chat.log.2。。。最后重新创建 chat.log,继续输出日志信息。它的构造函数是:
RotatingFileHandler( filename[, mode[, maxBytes[, backupCount]]])
其中filename和mode两个参数和FileHandler一样。
maxBytes用于指定日志文件的最大文件大小。如果maxBytes为0,意味着日志文件可以无限大,这时上面描述的重命名过程就不会发生。
backupCount用于指定保留的备份文件的个数。比如,如果指定为2,当上面描述的重命名过程发生时,原有的chat.log.2并不会被更名,而是被删除。
4) logging.handlers.TimedRotatingFileHandler
这个Handler和RotatingFileHandler类似,不过,它没有通过判断文件大小来决定何时重新创建日志文件,而是间隔一定时间就 自动创建新的日志文件。重命名的过程与RotatingFileHandler类似,不过新的文件不是附加数字,而是当前时间。它的构造函数是:
TimedRotatingFileHandler( filename [,when [,interval [,backupCount]]])
其中filename参数和backupCount参数和RotatingFileHandler具有相同的意义。
interval是时间间隔。
when参数是一个字符串。表示时间间隔的单位,不区分大小写。它有以下取值:
S 秒
M 分
H 小时
D 天
W 每星期(interval==0时代表星期一)
midnight 每天凌晨
import logging #create logger logger = logging.getLogger('TEST-LOG') logger.setLevel(logging.DEBUG) # create console handler and set level to debug ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) # create file handler and set level to warning fh = logging.FileHandler("access.log") fh.setLevel(logging.WARNING) # create formatter formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') # add formatter to ch and fh ch.setFormatter(formatter) fh.setFormatter(formatter) # add ch and fh to logger logger.addHandler(ch) logger.addHandler(fh) # 'application' code logger.debug('debug message') logger.info('info message') logger.warn('warn message') logger.error('error message') logger.critical('critical message')
文件自动截断例子
import logging from logging import handlers logger = logging.getLogger(__name__) log_file = "timelog.log" #fh = handlers.RotatingFileHandler(filename=log_file,maxBytes=10,backupCount=3) fh = handlers.TimedRotatingFileHandler(filename=log_file,when="S",interval=5,backupCount=3) formatter = logging.Formatter('%(asctime)s %(module)s:%(lineno)d %(message)s') fh.setFormatter(formatter) logger.addHandler(fh) logger.warning("test1") logger.warning("test12") logger.warning("test13") logger.warning("test14")
re模块
常用正则表达式符号
1 '.' 默认匹配除 之外的任意一个字符,若指定flag DOTALL,则匹配任意字符,包括换行 2 '^' 匹配字符开头,若指定flags MULTILINE,这种也可以匹配上(r"^a"," abc eee",flags=re.MULTILINE) 3 '$' 匹配字符结尾,或e.search("foo$","bfoo sdfsf",flags=re.MULTILINE).group()也可以 4 '*' 匹配*号前的字符0次或多次,re.findall("ab*","cabb3abcbbac") 结果为['abb', 'ab', 'a'] 5 '+' 匹配前一个字符1次或多次,re.findall("ab+","ab+cd+abb+bba") 结果['ab', 'abb'] 6 '?' 匹配前一个字符1次或0次 7 '{m}' 匹配前一个字符m次 8 '{n,m}' 匹配前一个字符n到m次,re.findall("ab{1,3}","abb abc abbcbbb") 结果'abb', 'ab', 'abb'] 9 '|' 匹配|左或|右的字符,re.search("abc|ABC","ABCBabcCD").group() 结果'ABC' 10 '(...)' 分组匹配,re.search("(abc){2}a(123|456)c", "abcabca456c").group() 结果 abcabca456c 11 12 13 'A' 只从字符开头匹配,re.search("Aabc","alexabc") 是匹配不到的 14 '' 匹配字符结尾,同$ 15 'd' 匹配数字0-9 16 'D' 匹配非数字 17 'w' 匹配[A-Za-z0-9] 18 'W' 匹配非[A-Za-z0-9] 19 's' 匹配空白字符、 、 、 , re.search("s+","ab c1 3").group() 结果 ' ' 20 21 '(?P<name>...)' 分组匹配 re.search("(?P<province>[0-9]{4})(?P<city>[0-9]{2})(?P<birthday>[0-9]{4})","371481199306143242").groupdict("city") 结果{'province': '3714', 'city': '81', 'birthday': '1993'}
最常用的匹配语法
1 re.match 从头开始匹配 2 re.search 匹配包含 3 re.findall 把所有匹配到的字符放到以列表中的元素返回 4 re.splitall 以匹配到的字符当做列表分隔符 5 re.sub 匹配字符并替换
反斜杠的困扰
与大多数编程语言相同,正则表达式里使用""作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符"",那么使用编程语言表示的正则表达式里将需要4个反斜杠"\\":前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r"\"表示。同样,匹配一个数字的"\d"可以写成r"d"。有了原生字符串,你再也不用担心是不是漏写了反斜杠,写出来的表达式也更直观。
仅需轻轻知道的几个匹配模式
1 re.I(re.IGNORECASE): 忽略大小写(括号内是完整写法,下同) 2 M(MULTILINE): 多行模式,改变'^'和'$'的行为(参见上图) 3 S(DOTALL): 点任意匹配模式,改变'.'的行为
开发一个简单的python计算器
- 实现加减乘除及拓号优先级解析
- 用户输入 1 - 2 * ( (60-30 +(-40/5) * (9-2*5/3 + 7 /3*99/4*2998 +10 * 568/14 )) - (-4*3)/ (16-3*2) )等类似公式后,必须自己解析里面的(),+,-,*,/符号和公式(不能调用eval等类似功能偷懒实现),运算后得出结果,结果必须与真实的计算器所得出的结果一致
hint:
re.search(r'([^()]+)',s).group()
'(-40/5)'