Sequential.fit()
语法syntax
fit(x=None, y=None,
batch_size=None,
epochs=1,
verbose=1,
callbacks=None,
validation_split=0.0, validation_data=None,
shuffle=True,
class_weight=None, sample_weight=None,
initial_epoch=0,
steps_per_epoch=None,
validation_steps=None)
参数说明
- x: 训练数据的 Numpy 数组。 如果模型中的输入层被命名,你也可以传递一个字典,将输入层名称映射到 Numpy 数组。 如果从本地框架张量馈送(例如 TensorFlow 数据张量)数据,x 可以是
None
(默认)。 - y: 目标(标签)数据的 Numpy 数组。 如果模型中的输出层被命名,你也可以传递一个字典,将输出层名称映射到 Numpy 数组。 如果从本地框架张量馈送(例如 TensorFlow 数据张量)数据,y 可以是
None
(默认)。 - batch_size: 整数或
None
。每次提度更新的样本数。如果未指定,默认为 32. - epochs: 整数。训练模型迭代轮次。一个轮次是在整个
x
或y
上的一轮迭代。请注意,与initial_epoch
一起,epochs
被理解为 「最终轮次」。模型并不是训练了epochs
轮,而是到第epochs
轮停止训练。 - verbose: 0, 1 或 2。日志显示模式。 0 = 安静模式, 1 = 进度条, 2 = 每轮一行。
- callbacks: 一系列的
keras.callbacks.Callback
实例。一系列可以在训练时使用的回调函数。详见 callbacks。 - validation_split: 在 0 和 1 之间浮动。用作验证集的训练数据的比例。模型将分出一部分不会被训练的验证数据,并将在每一轮结束时评估这些验证数据的误差和任何其他模型指标。验证数据是混洗之前
x
和y
数据的最后一部分样本中。 - validation_data: 元组
(x_val,y_val)
或元组(x_val,y_val,val_sample_weights)
,用来评估损失,以及在每轮结束时的任何模型度量指标。模型将不会在这个数据上进行训练。这个参数会覆盖validation_split
。 - shuffle: 布尔值(是否在每轮迭代之前混洗数据)或者 字符串 (
batch
)。batch
是处理 HDF5 数据限制的特殊选项,它对一个 batch 内部的数据进行混洗。当steps_per_epoch
非None
时,这个参数无效。 - class_weight: 可选的字典,用来映射类索引(整数)到权重(浮点)值,用于加权损失函数(仅在训练期间)。这可能有助于告诉模型 「更多关注」来自代表性不足的类的样本。
- sample_weight: 训练样本的可选 Numpy 权重数组,用于对损失函数进行加权(仅在训练期间)。您可以传递与输入样本长度相同的平坦(1D)Numpy 数组(权重和样本之间的 1:1 映射),或者在时序数据的情况下,可以传递尺寸为
(samples, sequence_length)
的 2D 数组,以对每个样本的每个时间步施加不同的权重。在这种情况下,你应该确保在compile()
中指定sample_weight_mode="temporal"
。 - initial_epoch: 开始训练的轮次(有助于恢复之前的训练)。
- steps_per_epoch: 在声明一个轮次完成并开始下一个轮次之前的总步数(样品批次)。使用 TensorFlow 数据张量等输入张量进行训练时,默认值
None
等于数据集中样本的数量除以 batch 的大小,如果无法确定,则为 1。 - validation_steps: 只有在指定了
steps_per_epoch
时才有用。停止前要验证的总步数(批次样本)。
返回
一个 History
对象。其 History.history
属性是连续 epoch 训练损失和评估值,以及验证集损失和评估值的记录(如果适用)。
异常
- RuntimeError: 如果模型从未编译。
- ValueError: 在提供的输入数据与模型期望的不匹配的情况下。