• pytorch ImageFolder的覆写


    在为数据分类训练分类器的时候,比如猫狗分类时,我们经常会使用pytorch的ImageFolder:

    CLASS torchvision.datasets.ImageFolder(root, transform=None, target_transform=None, loader=<function default_loader>, is_valid_file=None)

    使用可见pytorch torchvision.ImageFolder的使用

    这里想实现的是如果想要覆写该函数,即能使用它的特性,又可以实现自己的功能

    首先先分析下其源代码:

    IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', 'webp']
    
    class ImageFolder(DatasetFolder):
        """A generic data loader where the images are arranged in this way: ::
    
            root/dog/xxx.png
            root/dog/xxy.png
            root/dog/xxz.png
    
            root/cat/123.png
            root/cat/nsdf3.png
            root/cat/asd932_.png
    
        Args:
            root (string): Root directory path.
            transform (callable, optional): A function/transform that  takes in an PIL image
                and returns a transformed version. E.g, ``transforms.RandomCrop``
            target_transform (callable, optional): A function/transform that takes in the
                target and transforms it.
            loader (callable, optional): A function to load an image given its path.
    
         Attributes:
            classes (list): List of the class names.
            class_to_idx (dict): Dict with items (class_name, class_index).
            imgs (list): List of (image path, class_index) tuples
        """
        def __init__(self, root, transform=None, target_transform=None,
                     loader=default_loader):
            super(ImageFolder, self).__init__(root, loader, IMG_EXTENSIONS,
                                              transform=transform,
                                              target_transform=target_transform)
            self.imgs = self.samples

    ImageFolder的代码很简单,主要是继承了DatasetFolder

    def has_file_allowed_extension(filename, extensions):
        """查看文件是否是支持的可扩展类型
    
        Args:
            filename (string): 文件路径
            extensions (iterable of strings): 可扩展类型列表,即能接受的图像文件类型
    
        Returns:
            bool: True if the filename ends with one of given extensions
        """
        filename_lower = filename.lower()
        return any(filename_lower.endswith(ext) for ext in extensions) # 返回True或False列表
    
    
    def make_dataset(dir, class_to_idx, extensions):
        """
            返回形如[(图像路径, 该图像对应的类别索引值),(),...]
        """
        images = []
        dir = os.path.expanduser(dir)
        for target in sorted(class_to_idx.keys()):
            d = os.path.join(dir, target)
            if not os.path.isdir(d):
                continue
    
            for root, _, fnames in sorted(os.walk(d)): #层层遍历文件夹,返回当前文件夹路径,存在的所有文件夹名,存在的所有文件名
                for fname in sorted(fnames):
                    if has_file_allowed_extension(fname, extensions):查看文件是否是支持的可扩展类型,是则继续
                        path = os.path.join(root, fname)
                        item = (path, class_to_idx[target])
                        images.append(item)
    
        return images
    
    class DatasetFolder(data.Dataset):
        """A generic data loader where the samples are arranged in this way: ::
    
            root/class_x/xxx.ext
            root/class_x/xxy.ext
            root/class_x/xxz.ext
    
            root/class_y/123.ext
            root/class_y/nsdf3.ext
            root/class_y/asd932_.ext
    
        Args:
            root (string): 根目录路径
            loader (callable): 根据给定的路径来加载样本的可调用函数
            extensions (list[string]): 可扩展类型列表,即能接受的图像文件类型.
            transform (callable, optional): 用于样本的transform函数,然后返回样本transform后的版本
                E.g, ``transforms.RandomCrop`` for images.
            target_transform (callable, optional): 用于样本标签的transform函数
    
         Attributes:
            classes (list): 类别名列表
            class_to_idx (dict): 项目(class_name, class_index)字典,如{'cat': 0, 'dog': 1}
            samples (list): (sample path, class_index) 元组列表,即(样本路径, 类别索引)
            targets (list): 在数据集中每张图片的类索引值,为列表
        """
    
        def __init__(self, root, loader, extensions, transform=None, target_transform=None):
            classes, class_to_idx = self._find_classes(root) # 得到类名和类索引,如['cat', 'dog']和{'cat': 0, 'dog': 1}
            # 返回形如[(图像路径, 该图像对应的类别索引值),(),...],即对每个图像进行标记
            samples = make_dataset(root, class_to_idx, extensions) 
            if len(samples) == 0:
                raise(RuntimeError("Found 0 files in subfolders of: " + root + "
    "
                                   "Supported extensions are: " + ",".join(extensions)))
    
            self.root = root
            self.loader = loader
            self.extensions = extensions
    
            self.classes = classes
            self.class_to_idx = class_to_idx
            self.samples = samples
            self.targets = [s[1] for s in samples] #所有图像的类索引值组成的列表
    
            self.transform = transform
            self.target_transform = target_transform
    
        def _find_classes(self, dir):
            """
            在数据集中查找类文件夹。
    
            Args:
                dir (string): 根目录路径
    
            Returns:
                返回元组: (classes, class_to_idx)即(类名, 类索引),其中classes即相应的目录名,如['cat', 'dog'];class_to_idx为形如{类名:类索引}的字典,如{'cat': 0, 'dog': 1}.
    
            Ensures:
                保证没有类名是另一个类目录的子目录
            """
            if sys.version_info >= (3, 5):
                # Faster and available in Python 3.5 and above
                classes = [d.name for d in os.scandir(dir) if d.is_dir()] #获得根目录dir的所有第一层子目录名
            else:
                classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))] #效果和上面的一样,只是版本不同方法不同
            classes.sort() #然后对类名进行排序
            class_to_idx = {classes[i]: i for i in range(len(classes))} #然后将类名和索引值一一对应的到相应字典,如{'cat': 0, 'dog': 1}
            return classes, class_to_idx #然后返回类名和类索引
    
        def __getitem__(self, index):
            """
            Args:
                index (int): Index
    
            Returns:
                tuple: (sample, target) where target is class_index of the target class.
            """
            path, target = self.samples[index]
            sample = self.loader(path) # 加载图片
            if self.transform is not None:
                sample = self.transform(sample)
            if self.target_transform is not None:
                target = self.target_transform(target)
    
            return sample, target
    
        def __len__(self):
            return len(self.samples)
    
        def __repr__(self):
            fmt_str = 'Dataset ' + self.__class__.__name__ + '
    '
            fmt_str += '    Number of datapoints: {}
    '.format(self.__len__())
            fmt_str += '    Root Location: {}
    '.format(self.root)
            tmp = '    Transforms (if any): '
            fmt_str += '{0}{1}
    '.format(tmp, self.transform.__repr__().replace('
    ', '
    ' + ' ' * len(tmp)))
            tmp = '    Target Transforms (if any): '
            fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('
    ', '
    ' + ' ' * len(tmp)))
            return fmt_str

    此时想要覆写ImageFolder,代码为:

    class CustomImageFolder(ImageFolder):
        """
            为了得到两张图(其中一张是随机选取的)的图像和索引值信息
        """
        def __init__(self, root, transform=None):
            super(CustomImageFolder, self).__init__(root, transform)
            self.indices = range(len(self)) #该文件夹中的长度
    
        def __getitem__(self, index1):
            index2 = random.choice(self.indices) #从[0,indices]中随机抽取一个数字,为了随机选取一张图
    
            path1 = self.imgs[index1][0] #此时的self.imgs等于self.samples,即内容为[(图像路径, 该图像对应的类别索引值),(),...]
            label1 = self.imgs[index1][1]
            path2 = self.imgs[index2][0]
            label2 = self.imgs[index2][1]
    
            img1 = self.loader(path1)
            img2 = self.loader(path2)
            if self.transform is not None:
                img1 = self.transform(img1)
                img2 = self.transform(img2)
    
            return img1, img2, label1, label2
  • 相关阅读:
    docker数据卷
    docker容器的启动、停止、运行、导入、导出、删除
    docker镜像的获取、创建、修改、删除、导入操作
    docker使用-spark安装
    python爬虫-3 解析库
    python爬虫-2 requests使用
    NLP-HMM
    NLP-中文分词-预处理
    python爬虫-1环境安装
    学习笔记3
  • 原文地址:https://www.cnblogs.com/wanghui-garcia/p/11514368.html
Copyright © 2020-2023  润新知