参考:https://blog.csdn.net/u013733326/article/details/79767169
希望大家直接到上面的网址去查看代码,下面是本人的笔记
实现多层神经网络
1.准备软件包
import numpy as np
import h5py
import matplotlib.pyplot as plt
import testCases #参见资料包,或者在文章底部copy
from dnn_utils import sigmoid, sigmoid_backward, relu, relu_backward #参见资料包
import lr_utils #参见资料包,或者在文章底部copy
为了和作者的数据匹配,需要指定随机种子
np.random.seed(1)
2.初始化参数
def initialize_parameters_deep(layers_dims): """ 此函数是为了初始化多层网络参数而使用的函数。 参数: layers_dims - 包含我们网络中每个图层的节点数量的列表 返回: parameters - 包含参数“W1”,“b1”,...,“WL”,“bL”的字典: W1 - 权重矩阵,维度为(layers_dims [1],layers_dims [1-1]) bl - 偏向量,维度为(layers_dims [1],1) """ np.random.seed(3) parameters = {} L = len(layers_dims) for l in range(1,L): parameters["W" + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) / np.sqrt(layers_dims[l - 1]) parameters["b" + str(l)] = np.zeros((layers_dims[l], 1)) #确保我要的数据的格式是正确的 assert(parameters["W" + str(l)].shape == (layers_dims[l], layers_dims[l-1])) assert(parameters["b" + str(l)].shape == (layers_dims[l], 1)) return parameters
测试两层时:
#测试initialize_parameters_deep print("==============测试initialize_parameters_deep==============") layers_dims = [5,4,3] #这个其实也是实现了两层 parameters = initialize_parameters_deep(layers_dims) print(parameters) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"]))
返回:
==============测试initialize_parameters_deep============== {'W1': array([[ 0.79989897, 0.19521314, 0.04315498, -0.83337927, -0.12405178], [-0.15865304, -0.03700312, -0.28040323, -0.01959608, -0.21341839], [-0.58757818, 0.39561516, 0.39413741, 0.76454432, 0.02237573], [-0.18097724, -0.24389238, -0.69160568, 0.43932807, -0.49241241]]), 'b1': array([[0.], [0.], [0.], [0.]]), 'W2': array([[-0.59252326, -0.10282495, 0.74307418, 0.11835813], [-0.51189257, -0.3564966 , 0.31262248, -0.08025668], [-0.38441818, -0.11501536, 0.37252813, 0.98805539]]), 'b2': array([[0.], [0.], [0.]])} W1 = [[ 0.79989897 0.19521314 0.04315498 -0.83337927 -0.12405178] [-0.15865304 -0.03700312 -0.28040323 -0.01959608 -0.21341839] [-0.58757818 0.39561516 0.39413741 0.76454432 0.02237573] [-0.18097724 -0.24389238 -0.69160568 0.43932807 -0.49241241]] b1 = [[0.] [0.] [0.] [0.]] W2 = [[-0.59252326 -0.10282495 0.74307418 0.11835813] [-0.51189257 -0.3564966 0.31262248 -0.08025668] [-0.38441818 -0.11501536 0.37252813 0.98805539]] b2 = [[0.] [0.] [0.]]
测试三层时:
#测试initialize_parameters_deep print("==============测试initialize_parameters_deep==============") layers_dims = [5,4,3,2] #实现三层看看 parameters = initialize_parameters_deep(layers_dims) print(parameters) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) print("W3 = " + str(parameters["W3"])) print("b3 = " + str(parameters["b3"]))
返回:
==============测试initialize_parameters_deep============== {'W1': array([[ 0.79989897, 0.19521314, 0.04315498, -0.83337927, -0.12405178], [-0.15865304, -0.03700312, -0.28040323, -0.01959608, -0.21341839], [-0.58757818, 0.39561516, 0.39413741, 0.76454432, 0.02237573], [-0.18097724, -0.24389238, -0.69160568, 0.43932807, -0.49241241]]), 'b1': array([[0.], [0.], [0.], [0.]]), 'W2': array([[-0.59252326, -0.10282495, 0.74307418, 0.11835813], [-0.51189257, -0.3564966 , 0.31262248, -0.08025668], [-0.38441818, -0.11501536, 0.37252813, 0.98805539]]), 'b2': array([[0.], [0.], [0.]]), 'W3': array([[-0.71829494, -0.36166197, -0.46405457], [-1.39665832, -0.53335157, -0.59113495]]), 'b3': array([[0.], [0.]])} W1 = [[ 0.79989897 0.19521314 0.04315498 -0.83337927 -0.12405178] [-0.15865304 -0.03700312 -0.28040323 -0.01959608 -0.21341839] [-0.58757818 0.39561516 0.39413741 0.76454432 0.02237573] [-0.18097724 -0.24389238 -0.69160568 0.43932807 -0.49241241]] b1 = [[0.] [0.] [0.] [0.]] W2 = [[-0.59252326 -0.10282495 0.74307418 0.11835813] [-0.51189257 -0.3564966 0.31262248 -0.08025668] [-0.38441818 -0.11501536 0.37252813 0.98805539]] b2 = [[0.] [0.] [0.]] W3 = [[-0.71829494 -0.36166197 -0.46405457] [-1.39665832 -0.53335157 -0.59113495]] b3 = [[0.] [0.]]
3)前向传播
def L_model_forward(X,parameters): """ 实现[LINEAR-> RELU] *(L-1) - > LINEAR-> SIGMOID计算前向传播,也就是多层网络的前向传播,为后面每一层都执行LINEAR和ACTIVATION 参数: X - 数据,numpy数组,维度为(输入节点数量,示例数) parameters - initialize_parameters_deep()的输出 返回: AL - 最后的激活值 caches - 包含以下内容的缓存列表: linear_relu_forward()的每个cache(有L-1个,索引为从0到L-2) linear_sigmoid_forward()的cache(只有一个,索引为L-1) """ caches = [] A = X L = len(parameters) // 2 for l in range(1,L): A_prev = A A, cache = linear_activation_forward(A_prev, parameters['W' + str(l)], parameters['b' + str(l)], "relu") caches.append(cache) #最后一层使用sigmoid函数进行二分类 AL, cache = linear_activation_forward(A, parameters['W' + str(L)], parameters['b' + str(L)], "sigmoid") caches.append(cache) assert(AL.shape == (1,X.shape[1])) return AL,caches
上面函数使用的线性激活函数linear_activation_forward:
def linear_activation_forward(A_prev,W,b,activation): """ 实现LINEAR-> ACTIVATION 这一层的前向传播 参数: A_prev - 来自上一层(或输入层)的激活,维度为(上一层的节点数量,示例数) W - 权重矩阵,numpy数组,维度为(当前层的节点数量,前一层的大小) b - 偏向量,numpy阵列,维度为(当前层的节点数量,1) activation - 选择在此层中使用的激活函数名,字符串类型,【"sigmoid" | "relu"】 返回: A - 激活函数的输出,也称为激活后的值 cache - 一个包含“linear_cache”和“activation_cache”的字典,我们需要存储它以有效地计算后向传递 """ if activation == "sigmoid": Z, linear_cache = linear_forward(A_prev, W, b) A, activation_cache = sigmoid(Z) elif activation == "relu": Z, linear_cache = linear_forward(A_prev, W, b) A, activation_cache = relu(Z) assert(A.shape == (W.shape[0],A_prev.shape[1])) cache = (linear_cache,activation_cache) return A,cache
测试函数L_model_forward_test_case():
def L_model_forward_test_case(): #两层 """ X = np.array([[-1.02387576, 1.12397796], [-1.62328545, 0.64667545], [-1.74314104, -0.59664964]]) parameters = {'W1': np.array([[ 1.62434536, -0.61175641, -0.52817175], [-1.07296862, 0.86540763, -2.3015387 ]]), 'W2': np.array([[ 1.74481176, -0.7612069 ]]), 'b1': np.array([[ 0.], [ 0.]]), 'b2': np.array([[ 0.]])} """ np.random.seed(1) X = np.random.randn(4,2) W1 = np.random.randn(3,4) b1 = np.random.randn(3,1) W2 = np.random.randn(1,3) b2 = np.random.randn(1,1) parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return X, parameters
测试:
#测试L_model_forward print("==============测试L_model_forward==============") X,parameters = testCases.L_model_forward_test_case() print(parameters) AL,caches = L_model_forward(X,parameters) print("AL = " + str(AL)) print("caches 的长度为 = " + str(len(caches))) print(caches)
返回:
==============测试L_model_forward============== {'W1': array([[ 0.3190391 , -0.24937038, 1.46210794, -2.06014071], [-0.3224172 , -0.38405435, 1.13376944, -1.09989127], [-0.17242821, -0.87785842, 0.04221375, 0.58281521]]), 'b1': array([[-1.10061918], [ 1.14472371], [ 0.90159072]]), 'W2': array([[ 0.50249434, 0.90085595, -0.68372786]]), 'b2': array([[-0.12289023]])} AL = [[0.17007265 0.2524272 ]] caches 的长度为 = 2 [((array([[ 1.62434536, -0.61175641], [-0.52817175, -1.07296862], [ 0.86540763, -2.3015387 ], [ 1.74481176, -0.7612069 ]]), array([[ 0.3190391 , -0.24937038, 1.46210794, -2.06014071], [-0.3224172 , -0.38405435, 1.13376944, -1.09989127], [-0.17242821, -0.87785842, 0.04221375, 0.58281521]]), array([[-1.10061918], [ 1.14472371], [ 0.90159072]])), array([[-2.77991749, -2.82513147], [-0.11407702, -0.01812665], [ 2.13860272, 1.40818979]])), ((array([[0. , 0. ], [0. , 0. ], [2.13860272, 1.40818979]]), array([[ 0.50249434, 0.90085595, -0.68372786]]), array([[-0.12289023]])), array([[-1.58511248, -1.08570881]]))]
4.计算成本
def compute_cost(AL,Y):
"""
实施等式(4)定义的成本函数。
参数:
AL - 与标签预测相对应的概率向量,维度为(1,示例数量)
Y - 标签向量(例如:如果不是猫,则为0,如果是猫则为1),维度为(1,数量)
返回:
cost - 交叉熵成本
"""
m = Y.shape[1]
cost = -np.sum(np.multiply(np.log(AL),Y) + np.multiply(np.log(1 - AL), 1 - Y)) / m
cost = np.squeeze(cost)
assert(cost.shape == ())
return cost
测试函数:
def compute_cost_test_case():
Y = np.asarray([[1, 1, 1]])
aL = np.array([[.8,.9,0.4]])
return Y, aL
测试:
#测试compute_cost
print("==============测试compute_cost==============")
Y,AL = testCases.compute_cost_test_case()
print("cost = " + str(compute_cost(AL, Y)))
返回:
==============测试compute_cost==============
cost = 0.414931599615397
5.后向传播
因为最后的输出层使用的是sigmoid函数,隐藏层使用的是Relu函数
所以需要对最后一层进行特殊计算,其他层迭代即可
即A[L],它属于输出层的输出,A[L]=σ(Z[L]),所以我们需要计算dAL,我们可以使用下面的代码来计算它:
dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
计算完了以后,我们可以使用此激活后的梯度dAL继续向后计算
其实是先通过线性激活部分后向传播得到dz,然后再将dz带入线性部分的后向传播得到dw,db,dA_prev
1)线性部分
根据这三个公式来构建后向传播函数
def linear_backward(dZ,cache):
"""
为单层实现反向传播的线性部分(第L层)
参数:
dZ - 相对于(当前第l层的)线性输出的成本梯度
cache - 来自当前层前向传播的值的元组(A_prev,W,b)
返回:
dA_prev - 相对于激活(前一层l-1)的成本梯度,与A_prev维度相同
dW - 相对于W(当前层l)的成本梯度,与W的维度相同
db - 相对于b(当前层l)的成本梯度,与b维度相同
"""
A_prev, W, b = cache
m = A_prev.shape[1]
dW = np.dot(dZ, A_prev.T) / m
db = np.sum(dZ, axis=1, keepdims=True) / m
dA_prev = np.dot(W.T, dZ)
assert (dA_prev.shape == A_prev.shape)
assert (dW.shape == W.shape)
assert (db.shape == b.shape)
return dA_prev, dW, db
2)线性激活部分
将线性部分也使用了进来
在dnn_utils.py中定义了两个现成可用的后向函数,用来帮助计算dz:
如果 g(.)是激活函数, 那么sigmoid_backward 和 relu_backward 这样计算:
- sigmoid_backward:实现了sigmoid()函数的反向传播,用来计算dz为:
dZ = sigmoid_backward(dA, activation_cache)
- relu_backward: 实现了relu()函数的反向传播,用来计算dz为:
dZ = relu_backward(dA, activation_cache)
后向函数为:
def sigmoid_backward(dA, cache):
"""
Implement the backward propagation for a single SIGMOID unit.
Arguments:
dA -- post-activation gradient, of any shape
cache -- 'Z' where we store for computing backward propagation efficiently
Returns:
dZ -- Gradient of the cost with respect to Z
"""
Z = cache
s = 1/(1+np.exp(-Z))
dZ = dA * s * (1-s)
assert (dZ.shape == Z.shape)
return dZ
def relu_backward(dA, cache):
"""
Implement the backward propagation for a single RELU unit.
Arguments:
dA -- post-activation gradient, of any shape
cache -- 'Z' where we store for computing backward propagation efficiently
Returns:
dZ -- Gradient of the cost with respect to Z
"""
Z = cache
dZ = np.array(dA, copy=True) # just converting dz to a correct object.
# When z <= 0, you should set dz to 0 as well.
dZ[Z <= 0] = 0
assert (dZ.shape == Z.shape)
return dZ
代码为:
def linear_activation_backward(dA,cache,activation="relu"):
"""
实现LINEAR-> ACTIVATION层的后向传播。
参数:
dA - 当前层l的激活后的梯度值
cache - 我们存储的用于有效计算反向传播的值的元组(值为linear_cache,activation_cache)
activation - 要在此层中使用的激活函数名,字符串类型,【"sigmoid" | "relu"】
返回:
dA_prev - 相对于激活(前一层l-1)的成本梯度值,与A_prev维度相同
dW - 相对于W(当前层l)的成本梯度值,与W的维度相同
db - 相对于b(当前层l)的成本梯度值,与b的维度相同
"""
linear_cache, activation_cache = cache
#其实是先通过线性激活部分后向传播得到dz,然后再将dz带入线性部分的后向传播得到dw,db,dA_prev
if activation == "relu":
dZ = relu_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
elif activation == "sigmoid":
dZ = sigmoid_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
return dA_prev,dW,db
整合函数,用于多层神经网络:
def L_model_backward(AL,Y,caches): """ 对[LINEAR-> RELU] *(L-1) - > LINEAR - > SIGMOID组执行反向传播,就是多层网络的向后传播 参数: AL - 概率向量,正向传播输出层的输出(L_model_forward()) Y - 标签向量,真正正确的结果(例如:如果不是猫,则为0,如果是猫则为1),维度为(1,数量) caches - 包含以下内容的cache列表: linear_activation_forward("relu")的cache,不包含输出层 linear_activation_forward("sigmoid")的cache 返回: grads - 具有梯度值的字典 grads [“dA”+ str(l)] = ... grads [“dW”+ str(l)] = ... grads [“db”+ str(l)] = ... """ grads = {} L = len(caches) m = AL.shape[1] #得到数据量,几张照片 Y = Y.reshape(AL.shape) #保证AL和Y两者格式相同 dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) #计算得到dAL current_cache = caches[L-1] #用于输出层的cache存储的值 #对输出层进行后向传播 grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, "sigmoid") for l in reversed(range(L-1)): #迭代对接下来的隐藏层进行后向传播 current_cache = caches[l] dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 2)], current_cache, "relu") grads["dA" + str(l + 1)] = dA_prev_temp grads["dW" + str(l + 1)] = dW_temp grads["db" + str(l + 1)] = db_temp return grads
测试函数:
def L_model_backward_test_case(): #计算后向传播的前向传播的值 """ X = np.random.rand(3,2) Y = np.array([[1, 1]]) parameters = {'W1': np.array([[ 1.78862847, 0.43650985, 0.09649747]]), 'b1': np.array([[ 0.]])} aL, caches = (np.array([[ 0.60298372, 0.87182628]]), [((np.array([[ 0.20445225, 0.87811744], [ 0.02738759, 0.67046751], [ 0.4173048 , 0.55868983]]), np.array([[ 1.78862847, 0.43650985, 0.09649747]]), np.array([[ 0.]])), np.array([[ 0.41791293, 1.91720367]]))]) """ np.random.seed(3) AL = np.random.randn(1, 2) Y = np.array([[1, 0]]) A1 = np.random.randn(4,2) W1 = np.random.randn(3,4) b1 = np.random.randn(3,1) Z1 = np.random.randn(3,2) linear_cache_activation_1 = ((A1, W1, b1), Z1) A2 = np.random.randn(3,2) W2 = np.random.randn(1,3) b2 = np.random.randn(1,1) Z2 = np.random.randn(1,2) linear_cache_activation_2 = ( (A2, W2, b2), Z2) caches = (linear_cache_activation_1, linear_cache_activation_2) return AL, Y, caches
测试:
#测试L_model_backward print("==============测试L_model_backward==============") AL, Y_assess, caches = testCases.L_model_backward_test_case() grads = L_model_backward(AL, Y_assess, caches) print ("dW1 = "+ str(grads["dW1"])) print ("db1 = "+ str(grads["db1"])) print ("dA1 = "+ str(grads["dA1"]))
返回:
==============测试L_model_backward============== dW1 = [[0.41010002 0.07807203 0.13798444 0.10502167] [0. 0. 0. 0. ] [0.05283652 0.01005865 0.01777766 0.0135308 ]] db1 = [[-0.22007063] [ 0. ] [-0.02835349]] dA1 = [[ 0. 0.52257901] [ 0. -0.3269206 ] [ 0. -0.32070404] [ 0. -0.74079187]]
6.更新参数
根据上面后向传播得到的dw,db,dA_prev来更新参数,其中 α 是学习率
函数:
def update_parameters(parameters, grads, learning_rate):
"""
使用梯度下降更新参数
参数:
parameters - 包含你的参数的字典,即w和b
grads - 包含梯度值的字典,是L_model_backward的输出
返回:
parameters - 包含更新参数的字典
参数[“W”+ str(l)] = ...
参数[“b”+ str(l)] = ...
"""
L = len(parameters) // 2 #整除2,得到层数
for l in range(L):
parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)]
parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)]
return parameters
测试函数:
def update_parameters_test_case():
"""
parameters = {'W1': np.array([[ 1.78862847, 0.43650985, 0.09649747],
[-1.8634927 , -0.2773882 , -0.35475898],
[-0.08274148, -0.62700068, -0.04381817],
[-0.47721803, -1.31386475, 0.88462238]]),
'W2': np.array([[ 0.88131804, 1.70957306, 0.05003364, -0.40467741],
[-0.54535995, -1.54647732, 0.98236743, -1.10106763],
[-1.18504653, -0.2056499 , 1.48614836, 0.23671627]]),
'W3': np.array([[-1.02378514, -0.7129932 , 0.62524497],
[-0.16051336, -0.76883635, -0.23003072]]),
'b1': np.array([[ 0.],
[ 0.],
[ 0.],
[ 0.]]),
'b2': np.array([[ 0.],
[ 0.],
[ 0.]]),
'b3': np.array([[ 0.],
[ 0.]])}
grads = {'dW1': np.array([[ 0.63070583, 0.66482653, 0.18308507],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ]]),
'dW2': np.array([[ 1.62934255, 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. ]]),
'dW3': np.array([[-1.40260776, 0. , 0. ]]),
'da1': np.array([[ 0.70760786, 0.65063504],
[ 0.17268975, 0.15878569],
[ 0.03817582, 0.03510211]]),
'da2': np.array([[ 0.39561478, 0.36376198],
[ 0.7674101 , 0.70562233],
[ 0.0224596 , 0.02065127],
[-0.18165561, -0.16702967]]),
'da3': np.array([[ 0.44888991, 0.41274769],
[ 0.31261975, 0.28744927],
[-0.27414557, -0.25207283]]),
'db1': 0.75937676204411464,
'db2': 0.86163759922811056,
'db3': -0.84161956022334572}
"""
np.random.seed(2)
W1 = np.random.randn(3,4)
b1 = np.random.randn(3,1)
W2 = np.random.randn(1,3)
b2 = np.random.randn(1,1)
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
np.random.seed(3)
dW1 = np.random.randn(3,4)
db1 = np.random.randn(3,1)
dW2 = np.random.randn(1,3)
db2 = np.random.randn(1,1)
grads = {"dW1": dW1,
"db1": db1,
"dW2": dW2,
"db2": db2}
return parameters, grads
测试:
#测试update_parameters
print("==============测试update_parameters==============")
parameters, grads = testCases.update_parameters_test_case()
parameters = update_parameters(parameters, grads, 0.1)
print ("W1 = "+ str(parameters["W1"]))
print ("b1 = "+ str(parameters["b1"]))
print ("W2 = "+ str(parameters["W2"]))
print ("b2 = "+ str(parameters["b2"]))
返回:
==============测试update_parameters==============
W1 = [[-0.59562069 -0.09991781 -2.14584584 1.82662008]
[-1.76569676 -0.80627147 0.51115557 -1.18258802]
[-1.0535704 -0.86128581 0.68284052 2.20374577]]
b1 = [[-0.04659241]
[-1.28888275]
[ 0.53405496]]
W2 = [[-0.55569196 0.0354055 1.32964895]]
b2 = [[-0.84610769]]
7.整合函数——训练
def L_layer_model(X, Y, layers_dims, learning_rate=0.0075, num_iterations=3000, print_cost=False,isPlot=True): """ 实现一个L层神经网络:[LINEAR-> RELU] *(L-1) - > LINEAR-> SIGMOID。 参数: X - 输入的数据,维度为(n_x,例子数) Y - 标签,向量,0为非猫,1为猫,维度为(1,数量) layers_dims - 层数的向量,维度为(n_y,n_h,···,n_h,n_y) learning_rate - 学习率 num_iterations - 迭代的次数 print_cost - 是否打印成本值,每100次打印一次 isPlot - 是否绘制出误差值的图谱 返回: parameters - 模型学习的参数。 然后他们可以用来预测。 """ np.random.seed(1) costs = [] #随机初始化参数 parameters = initialize_parameters_deep(layers_dims) for i in range(0,num_iterations): AL , caches = L_model_forward(X,parameters) #前向传播 cost = compute_cost(AL,Y) #成本计算 grads = L_model_backward(AL,Y,caches) #后向传播 parameters = update_parameters(parameters,grads,learning_rate) #更新参数 #打印成本值,如果print_cost=False则忽略 if i % 100 == 0: #记录成本 costs.append(cost) #是否打印成本值 if print_cost: print("第", i ,"次迭代,成本值为:" ,np.squeeze(cost)) #迭代完成,根据条件绘制图 if isPlot: plt.plot(np.squeeze(costs)) plt.ylabel('cost') plt.xlabel('iterations (per tens)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters
我们现在开始加载数据集,图像数据集的处理可以参照吴恩达课后作业学习1-week2-homework-logistic
train_set_x_orig , train_set_y , test_set_x_orig , test_set_y , classes = lr_utils.load_dataset() train_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T test_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T train_x = train_x_flatten / 255 train_y = train_set_y test_x = test_x_flatten / 255 test_y = test_set_y
数据集加载完成,开始正式训练:
layers_dims = [12288, 20, 7, 5, 1] # 5-layer model parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True,isPlot=True)
返回:
第 0 次迭代,成本值为: 0.715731513413713 第 100 次迭代,成本值为: 0.6747377593469114 第 200 次迭代,成本值为: 0.6603365433622127 第 300 次迭代,成本值为: 0.6462887802148751 第 400 次迭代,成本值为: 0.6298131216927773 第 500 次迭代,成本值为: 0.606005622926534 第 600 次迭代,成本值为: 0.5690041263975135 第 700 次迭代,成本值为: 0.519796535043806 第 800 次迭代,成本值为: 0.46415716786282285 第 900 次迭代,成本值为: 0.40842030048298916 第 1000 次迭代,成本值为: 0.37315499216069037 第 1100 次迭代,成本值为: 0.30572374573047123 第 1200 次迭代,成本值为: 0.2681015284774084 第 1300 次迭代,成本值为: 0.23872474827672593 第 1400 次迭代,成本值为: 0.20632263257914712 第 1500 次迭代,成本值为: 0.17943886927493544 第 1600 次迭代,成本值为: 0.15798735818801213 第 1700 次迭代,成本值为: 0.14240413012273928 第 1800 次迭代,成本值为: 0.12865165997885833 第 1900 次迭代,成本值为: 0.11244314998155475 第 2000 次迭代,成本值为: 0.08505631034966661 第 2100 次迭代,成本值为: 0.05758391198605767 第 2200 次迭代,成本值为: 0.044567534546938604 第 2300 次迭代,成本值为: 0.03808275166597662 第 2400 次迭代,成本值为: 0.034410749018403006
图示:
8.预测
def predict(X, y, parameters):
"""
该函数用于预测L层神经网络的结果,当然也包含两层
参数:
X - 测试集
y - 标签
parameters - 训练模型得到的最优参数
返回:
p - 给定数据集X的预测
"""
m = X.shape[1]
n = len(parameters) // 2 # 神经网络的层数
p = np.zeros((1,m))
#根据参数前向传播
probas, caches = L_model_forward(X, parameters)
for i in range(0, probas.shape[1]):
if probas[0,i] > 0.5:
p[0,i] = 1
else:
p[0,i] = 0
print("准确度为: " + str(float(np.sum((p == y))/m)))
return p
预测函数构建好了我们就开始预测,查看训练集和测试集的准确性:
pred_train = predict(train_x, train_y, parameters) #训练集
pred_test = predict(test_x, test_y, parameters) #测试集
返回:
准确度为: 0.9952153110047847 准确度为: 0.78
可见多层神经网络训练的效果比两层的要更好一些