Given a constant K and a singly linked list L, you are supposed to reverse the links of every K elements on L. For example, given L being 1→2→3→4→5→6, if K=3, then you must output 3→2→1→6→5→4; if K=4, you must output 4→3→2→1→5→6.
Input Specification:
Each input file contains one test case. For each case, the first line contains the address of the first node, a positive N (≤) which is the total number of nodes, and a positive K (≤) which is the length of the sublist to be reversed. The address of a node is a 5-digit nonnegative integer, and NULL is represented by -1.
Then N lines follow, each describes a node in the format:
Address Data Next
where Address
is the position of the node, Data
is an integer, and Next
is the position of the next node.
Output Specification:
For each case, output the resulting ordered linked list. Each node occupies a line, and is printed in the same format as in the input.
Sample Input:
00100 6 4
00000 4 99999
00100 1 12309
68237 6 -1
33218 3 00000
99999 5 68237
12309 2 33218
Sample Output:
00000 4 33218
33218 3 12309
12309 2 00100
00100 1 99999
99999 5 68237
68237 6 -1
#include<cstdio> #include<iostream> #include<algorithm> using namespace std; #define MAXSIZE 1000010 struct node { int data; int next; } node[MAXSIZE]; int List[MAXSIZE]; int main() { int begin,n,k; cin >> begin >> n >> k; int Address,Data,Next; for (int i = 0; i < n; i++) { cin >> Address >> Data >> Next; node[Address].data = Data; node[Address].next = Next; } int count = 0; int p = begin; while (p != -1) { List[count++] = p; p = node[p].next; } for(int i = 0; i + k <= count; i += k) { reverse(&List[i],&List[i+k]); } /* int i = 0; while (i + k <= count) { reverse(&List[i],&List[i+k]); i += k; } */ for(int i = 0; i < count; i++) { if(i < count - 1) { printf("%05d %d %05d ",List[i],node[List[i]].data,List[i+1]); } else { printf("%05d %d -1",List[i],node[List[i]].data); } } return 0; }