2004 年 7 月,谷歌在硅谷的 101 号公路边竖立了一块巨大的广告牌(如下图)用于招聘。内容超级简单,就是一个以 .com 结尾的网址,而前面的网址是一个 10 位素数,这个素数是自然常数 e 中最早出现的 10 位连续数字。能找出这个素数的人,就可以通过访问谷歌的这个网站进入招聘流程的下一步。
自然常数 e 是一个著名的超越数,前面若干位写出来是这样的:e = 2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427427466391932003059921... 其中粗体标出的 10 位数就是答案。
本题要求你编程解决一个更通用的问题:从任一给定的长度为 L 的数字中,找出最早出现的 K 位连续数字所组成的素数。
输入格式:
输入在第一行给出 2 个正整数,分别是 L(不超过 1000 的正整数,为数字长度)和 K(小于 10 的正整数)。接下来一行给出一个长度为 L 的正整数 N。
输出格式:
在一行中输出 N 中最早出现的 K 位连续数字所组成的素数。如果这样的素数不存在,则输出 404
。注意,原始数字中的前导零也计算在位数之内。例如在 200236 中找 4 位素数,0023 算是解;但第一位 2 不能被当成 0002 输出,因为在原始数字中不存在这个 2 的前导零。
输入样例 1:
20 5
23654987725541023819
输出样例 1:
49877
输入样例 2:
10 3
2468024680
输出样例 2:
404
#include<iostream> #include<algorithm> #include<cmath> using namespace std; bool isPrime(int x){ if(x == 0 || x == 1) return false; int sqr = (int)sqrt(x*1.0); for(int i = 2; i <= sqr; i++){ if(x%i == 0) return false; } return true; } int strToint(string &s){ int sum = 0; for(int i = 0; i < s.length(); i++){ sum = sum * 10 + s[i] - '0'; } return sum; } int main(){ string s; int l,k; cin >> l >> k >> s; //getchar(); //cin >> s; for(int i = 0; i <= l - k ; i++){ string tmp = s.substr(i,k); //int x = stoi(t); int x = strToint(tmp); //int x = toi(tmp.c_str()); if(isPrime(x)){ cout << tmp; return 0; } } cout << "404"; return 0; }