• 2017全国卷1文科第9题高考真题的解法


    【2017全国卷1文科第9题高考真题】已知函数(f(x)=lnx+ln(2-x)),则【】

    $A.$在$(0,2)$上单调递增
    $B.$在$(0,2)$上单调递减
    $C.y=f(x)$的图像关于直线$x=1$对称
    $D.y=f(x)$的图像关于点$(1,0)$对称

    分析:由于函数(f(x))是复合函数,定义域要使(x>0,2-x>0),即定义域是((0,2))

    (f(x)=ln[x(2-x)]=ln[-(x-1)^2+1]),则由复合函数的单调性法则可知,

    ((0,1))上单增,在((1,2))上单减,故排除(A)(B)

    若函数(y=f(x))关于点((1,0))对称,则函数(f(x))必然满足关系:(f(x)+f(2-x)=0)

    若函数(y=f(x))关于直线(x=1)对称,则函数(f(x))必然满足关系:(f(x)=f(2-x))

    接下来我们用上述的结论来验证,由于(f(x)=lnx+ln(2-x))

    (f(2-x)=ln(2-x)+ln(2-(2-x))=ln(2-x)+lnx),即满足(f(x)=f(2-x)),故函数(y=f(x))的图像关于直线(x=1)对称,选(C)

    再来验证(D),发现(f(x)+f(2-x)=2[lnx+ln(2-x)] eq 0)(D)选项不满足。故选(C)

    例2【2018高三文科训练题】已知函数(f(x)=lg(4x-x^2)),则【】

    $A.f(x)$在$(0,4)$上单调递增
    $B.f(x)$在$(0,4)$上单调递减
    $C.y=f(x)$的图像关于直线$x=2$对称
    $D.y=f(x)$的图像关于点$(2,0)$对称

    分析:令内函数(g(x)=4x-x^2>0),得到定义域((0,4)),又(g(x)=-(x-2)^2+4),故内函数在((0,2])单减,在([2,4))单增,外函数只有单调递增,故复合函数(f(x))((0,2])单减,在([2,4))单增,故排除(A)(B)

    要验证(C)选项,只需要验证(f(x)=f(4-x))即可,这是(y=f(x))的图像关于直线(x=2)对称的充要条件;

    (f(4-x)=lg[4(4-x)-(4-x)^2]=lg(16-4x-16+8x-x^2)=lg(4x-x^2)=f(x)),故选(C)

    若要验证(D)选项,只需要利用(y=f(x))的图像关于点((2,0))对称的充要条件,即验证(f(x)+f(4-x)=0)即可。自行验证,不满足。

    故本题目选(C).

  • 相关阅读:
    centos 安装 Lamp(Linux + Apache + PHP) 并安装 phpmyadmin
    mysql常用内置函数-查询语句中不能使用strtotime()函数!
    Windows下 wamp下Apache配置虚拟域名
    thinkphp ajax调用demo
    phpMailer 手册
    wampServer2.2 You don't have permission to access /phpmyadmin/ on this server.
    打印对象
    最全的CSS浏览器兼容问题
    html 视频播放器
    C语言入门-结构类型
  • 原文地址:https://www.cnblogs.com/wanghai0666/p/7219667.html
Copyright © 2020-2023  润新知