• 争鸣|两个易混概率题


    前言

    案例剖析

    例1(20)件产品,其中(5)件是次品,其余都是合格品,现不放回的从中依次抽(2)件.求以下情况下的概率:

    ①第一次抽到次品的概率;

    分析:由于仅仅考虑第一次抽取的情况,故所求概率(P=cfrac{C_5^1}{C_{20}^1}=cfrac{1}{4})

    ②第一次和第二次都抽到次品的概率;

    分析:抽取时要考虑到次序,即所求概率(P=cfrac{C_5^1 imes C_4^1}{C_{20}^1 imes C_{19}^1}=cfrac{1}{19})

    或理解为所求概率(P=cfrac{C_5^1}{ C_{20}^1} imes cfrac{C_4^1}{C_{19}^1}=cfrac{1}{19})

    ③在第一次抽到次品的条件下,第二次抽到次品的概率.

    分析:本问属于条件概率问题,

    令“第一次抽到次品”为事件(A),“第二次抽到次品”为事件(B)

    则“在第一次抽到次品的条件下,第二次抽到次品 ”为事件((B|A))

    由前面两问可知,(P(A)=cfrac{1}{4})(P(AB)=cfrac{1}{19})

    故由条件概率公式可得,(P(B|A)=cfrac{P(AB)}{P(A)}=cfrac{4}{19})

    例1-对照 从混有(5)张假钞的(20)张百元钞票中任意抽出(2)张,将其中(1)张放到验钞机上检验发现是假钞,则另(1)张也是假钞的概率为【  】

    $A.cfrac{1}{19}$ $B.cfrac{17}{38}$ $C.cfrac{4}{19}$ $D.cfrac{2}{17}$

    错解:本题目容易将模型转化为上述的((3))来求解,故选了(C),其实是有问题的。

    分析:条件概率,设事件(A)表示“抽到的两张都是假钞”,事件(B)表示“抽到的两张至少有一张假钞”,则所求概率为(P(A|B))

    (P(AB)=P(A)=cfrac{C_5^2}{C_{20}^2})(P(B)=cfrac{C_{5}^2+C_{5}^1cdot C_{15}^1}{C_{20}^2})

    由公式(P(A|B)=cfrac{P(AB)}{P(B)}=cfrac{C_5^2}{C_{5}^2+C_{5}^1cdot C_{15}^1}=cfrac{10}{10+75}=cfrac{2}{17})

    解后反思:你会发现两个题目的背景非常的类似,但是有区别,题目1的③的抽取涉及到次序,但题目2的抽取其实没有次序。由此题得到的启示:

    1、无放回的抽取时,我们一般不用组合数求解,常用分步乘法。

    2、当题目不涉及次序时,可以考虑用组合数求解,涉及次序时一般用排列数求解。其实也就是分步乘法原理。

  • 相关阅读:
    Period 计算日期之间的时间差遇到的问题
    Spring cloud jenkins 使用问题笔记jenkins publish over ssh (Exec exit status not zero. Status)
    Linux中scp命令获取远程文件的方法
    HTML5+CSS3从入门到精通 pdf下载
    Oracle RMAN-08137报错处理
    SQL中如何使用EXISTS替代IN
    你撸代码时,会戴耳机吗?
    MySQL必知必会 pdf下载
    SqlServer的sa账号被锁定
    windows系统如何查看端口被占用、杀进程
  • 原文地址:https://www.cnblogs.com/wanghai0666/p/5996815.html
Copyright © 2020-2023  润新知