前言
运算法则
- 实数指数幂的运算性质如下:此时(a>0),(b>0),(m,nin R)
公式:(a^mcdot a^n=a^{m+n});((a^m)^n=(a^n)^m=a^{mn});((acdot b)^n=a^ncdot b^n);((cfrac{a}{b})^n=cfrac{a^n}{b^n}=a^ncdot b^{-n});
- 指数幂运算化简的一般原则
(1).有括号的先算括号里的,无括号的先做指数运算.
(2).先乘除后加减,负指数幂化成正指数幂的倒数.
(3).底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数.
(4).若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.
(5).涉及化简问题,常将数字运算和字母运算分开进行。
典例剖析
解析:原式=([(0.3)^3]^{-frac{1}{3}}-[(cfrac{1}{7})^{2}]^{-1}+[(cfrac{5}{3})^2]^{frac{1}{2}}-1)
(=cfrac{10}{3}-49+cfrac{5}{3}-1=-45)
解:原式=(cfrac{left(left(a b^{2} ight)^{frac{1}{3}} cdot a^{3} cdot b^{2} ight)^{frac{1}{2}}}{b^{frac{1}{3}} cdot a^{frac{2}{3}} cdot b^{2}}=a^{frac{1}{6}+frac{3}{2}-frac{2}{3}} b^{frac{1}{3}+1-frac{1}{3}-2}=cfrac{a}{b})
解析:原式=(left(cfrac{3}{2} ight)^{-frac{1}{3}}+2^{frac{3}{4}} imes 2^{frac{1}{4}}+2^{2} imes 3^{3}-left(cfrac{2}{3} ight)^{frac{1}{3}}=left(cfrac{2}{3} ight)^{frac{1}{3}}+2+4 imes 27-left(cfrac{2}{3} ight)^{frac{1}{3}}=110) .
解析:原式=(cfrac{1}{2}-4 imes 16+sqrt{2}+1-sqrt{2}=cfrac{1}{2}-64+1=cfrac{1}{2}-63=-cfrac{125}{2})
解析:原式=(108+1-7+pi-3=99+pi)
解析:原式=(cfrac{left(a^{frac{1}{2}}-1 ight) cdotleft(a+a^{frac{1}{2}}+1 ight)}{a+a^{frac{1}{2}}+1}-cfrac{a^{frac{3}{2}}-a+a-a^{frac{1}{2}}-a^{frac{3}{2}}+a^{frac{1}{2}}-a+1}{a-1})
(=a^{frac{1}{2}}-1-cfrac{1-a}{a-1}=a^{frac{1}{2}})
解析:原式= (cfrac{a^{-frac{1}{3}}b^{frac{1}{2}}a^{-frac{1}{2}}b^{frac{1}{3}}}{a^{frac{1}{6}}b^{frac{5}{6}}})
(=a^{-frac{1}{3}-frac{1}{2}-frac{1}{6}}cdot b^{frac{1}{2}+frac{1}{3}-frac{5}{6}}==a^{-1}b^0=cfrac{1}{a}) ;
解析:若 (x+x^{-1}=3), 则 (left(x+x^{-1} ight)^{2}=9), 即 (x^{2}+x^{-2}=7)
(left(x^{frac{1}{2}}+x^{-frac{1}{2}} ight)^{2}=x+2+x^{-1}=5),
且因为 (x+x^{-1}=3>0), 所以 (x>0), (x^{frac{1}{2}}+x^{-frac{1}{2}}=sqrt{5})
(x^{frac{3}{2}}+x^{-frac{3}{2}}=left(x^{frac{1}{2}}+x^{-frac{1}{2}} ight)left(x+x^{-1}-1 ight)=2sqrt{5})
所以 (cfrac{x^{frac{3}{2}}+x^{-frac{3}{2}}-3}{x^{2}+x^{-2}-6}=cfrac{2sqrt{5}-3}{7-6}=2 sqrt{5}-3)
解析: (10^{frac{3m-n}{2}})(=)(cfrac{10^{frac{3 m}{2}}}{10^{frac{n}{2}}})(=)(cfrac{left(10^{m} ight)^{frac{3}{2}}}{left(10^{n} ight)^{frac{1}{2}}})
(=)(cfrac{2^{frac{3}{2}}}{4^{frac{1}{2}}}=2^{frac{3}{2}-1}=2^{frac{1}{2}}=sqrt{2}). 故选(B).
解:由分数指数幂的运算法则可得,
原式 (=left(a^{2} b^{2} ight)^{frac{1}{2}}left[left(a b^{2} ight)^{frac{1}{3}} ight]^{frac{1}{2}}divleft(a b^{2}b^{frac{1}{3}}a^{-frac{1}{3}} ight))
(=a^{frac{7}{6}} b^{frac{4}{3}})(div)((a^{frac{2}{3}}b^{frac{7}{3}}))(=a^{frac{7}{6}-frac{2}{3}}b^{frac{4}{3}-frac{7}{3}})
(=a^{frac{1}{2}}b^{-1}=cfrac{sqrt{a}}{b})
解:由于(cfrac{a^2+1}{a}=a+a^{-1}),
故给已知式子平方,得到 ((a^{frac{1}{2}}-a^{-frac{1}{2}})^2=m^2),
整理得到,(a+a^{-1}=m^2+2),故 (cfrac{a^2+1}{a}=m^2+2)
证明:令 (3^a=4^b=6^c=k),则 (a=log_3k), (b=log_4k), (c=log_6k),
故可以得到 (cfrac{1}{a}=log_k3) , (cfrac{1}{b}=log_k4) , (cfrac{1}{c}=log_k6) ,
则 (cfrac{2}{c}=2log_k6=log_k{36}) ,又 (cfrac{2}{a}+cfrac{1}{b}=2log_k3+log_k4=log_k{36}) ,
故(cfrac{2}{c}=cfrac{2}{a}+cfrac{1}{b}),证毕。
解:由于给定的方程为二元方程,故想到将其想办法变为一元方程,
两边同除以 (y) ,得到 (cfrac{x}{y}-sqrt{cfrac{x}{y}}-2=0),
令 (sqrt{cfrac{x}{y}}=t) ,则方程为(t^2-t-2=0),得到(t=2),或 (t=-1)(舍去)
故(sqrt{cfrac{x}{y}}=2), (cfrac{x}{y}=4) ,
将分式的分子分母同除以(y),得到
(cfrac{2x-sqrt{xy}}{y+sqrt{xy}}=cfrac{2 imesfrac{x}{y}-sqrt{frac{x}{y}}}{1+sqrt{frac{x}{y}}})
(=cfrac{2 imes4-2}{1+2 imes2}=cfrac{6}{5})
解析:先考虑将 (4m+n) 用 (2m+n) 和 (m-n)线性表示;
设(p(2m+n)+q(m-n)=4m+n),即(m(2p+q)+(p-q)n=4m+n),
解得(p=cfrac{5}{3}),(q=cfrac{2}{3}),
故 ((a^{2m+n})^{frac{5}{3}}=(2^{-2})^{frac{5}{3}})
即 (a^{frac{10m}{3}+frac{5n}{3}}=2^{-frac{10}{3}}) ①;
((a^{m-n})^{frac{2}{3}}=(2^{8})^{frac{2}{3}})
即 (a^{frac{2m}{3}-frac{2n}{3}}=2^{frac{16}{3}}) ②;
①( imes)②,得到 (a^{4m+n}=2^2=4)