• 独立性检验


    前言

    数学原理

    (H_0:)先假设两个变量(A)(B)是无相关关系的,(chi^2)的观测值(k_0)越大,则与之对应的假设事件(H_0)成立的概率越小,那么(H_0)不成立的概率越大,即两个变量相关的概率越大。

    使用说明

    独立性检验中的表格的解读:

    • 使用实例:比如计算得到(chi^2=8),则有(8>7.897),而7.897对应概率值为0.005,故有(1)-0.005$=(99.5\%)以上的把握认为“两个变量有关”,但还是有低于(0.5\%)的判断出错可能性,并不是百分之百。

    运算技巧

    • 独立性检验的(K^2)的计算中,先化简,后计算。

    比如(K^2=cfrac{105 imes(10 imes30-20 imes45)^2}{55 imes 50 imes30 imes75})

    (=cfrac{21 imes(300-900)^2}{11 imes 50 imes30 imes75})(=cfrac{21 imes600 imes600}{11 imes 50 imes30 imes75})

    (=cfrac{21 imes12 imes20}{11 imes 1 imes 1 imes75})(=cfrac{7 imes12 imes20}{11 imes 1 imes 1 imes25})

    (=cfrac{7 imes12 imes4}{11 imes 1 imes 1 imes5})(=cfrac{336}{55}=6.11)

    • 近似计算的要求和题目中已知数据的精确度保持一致。

    典例剖析

    例1【2017全国卷2文科19题理科18题高考真题】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:

    (1)记(A)表示事件“旧养殖法的箱产量低于50kg”,估计(A)的概率;

    分析:本题实质是考查用频率估计概率,所以要会根据频率分布直方图计算频率。

    由于“旧养殖法的箱产量低于50kg”的频率为((0.012+0.014+0.024+0.034+0.040) imes 5=0.62)

    故所求概率(P(A)=0.62)

    同理得到“新养殖法的箱产量低于50kg”的频率为((0.004+0.020+0.044) imes 5=0.34)

    (2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关,参考数据表格如下:
    (egin{array}{c|lcr} P(chi^2ge k_0) & 0.050 &0.010 &0.001 \ hline k_0 & 3.841 & 6.635 & 10.828 end{array})

    分析:由上问可知,“旧养殖法的箱产量低于50kg”的频数为(100 imes 0.62=62)

    则“旧养殖法的箱产量不低于(50kg)”的频数为(100-62=38)

    “新养殖法的箱产量低于(50kg)”的频数为(100 imes 0.34=34)

    则“新养殖法的箱产量不低于(50kg)”的频数为(100-34=66),由此得到二列联表如下:

    箱产量<(50kg) 箱产量(ge 50kg) 总计
    旧养殖法 (62(a)) (38(b)) (100(a+b))
    新养殖法 (34(c)) (66(d)) (100(c+d))
    总计 (96(a+c)) (104(b+d)) (200(a+b+c+d))

    由上表计算得到(chi^2=cfrac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)})

    (=cfrac{200(62 imes 66-38 imes 34)^2}{(62+38)(34+66)(62+34)(38+66)}=15.705>6.635)

    故有99%以上的把握认为,二者有关联。

    (3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较。

    分析:本题目的难点有:到底从哪些角度进行比较?每一个角度下的数值的计算方法。

    数据的极差:旧,(25-70);新,(35-70),极差反映了数据的取值范围和数据的几种程度,当然误差是有的;

    数据的众数:旧,(47.5);新,(52.5),众数反映了出现次数最多,

    数据的平均数:旧,(47.1);新,(52.35),平均数反映了一组数据的平均水平,

    数据的方差(标准差):比较精确的反映了数据的分散和集中程度,将这种程度数量化了。

    本题目从运算量和问题出发,可以从数据的范围和数据的中位数(或均值)两个角度作答。

    “旧养殖法”的数据分布在(25-70)之间,“新养殖法”的数据分布在(35-70)之间,

    故从数据范围来看,新养殖法的数据更集中,优于旧养殖法;

    “旧养殖法”的平均数(中位数)分布在(40-45)之间,“新养殖法”的平均数(中位数)分布在(50-55)之间,

    从平均数(中位数)角度来看,新养殖法也优于旧养殖法。

  • 相关阅读:
    学习进度笔记13
    学习进度笔记12
    学习进度笔记11
    学习进度笔记10
    学习进度笔记9
    《架构之美》读书笔记1
    学习进度笔记8
    电话拨号盘(带触摸振动反馈)
    堆排序(小根堆)
    图论起步(长期更新)
  • 原文地址:https://www.cnblogs.com/wanghai0666/p/12730860.html
Copyright © 2020-2023  润新知