• 不等式性质


    前言

    实数大小

    (a>bLeftrightarrow a-b>0);

    (a=bLeftrightarrow a-b=0);

    (a<bLeftrightarrow a-b<0);

    作差法:(left{egin{array}{l}{a-b>0 Leftrightarrow a>b}\{a-b=0 Leftrightarrow a=b}\{a-b<0 Leftrightarrow a<b}end{array} ight.(a,bin R))

    对作差的两个实数没有限制;可用于代数式大小比较,函数或数列的单调性判断;

    作商法:(left{egin{array}{l}{frac{a}{b}>1 Leftrightarrow a>b}\{frac{a}{b}=1 Leftrightarrow a=b}\{frac{a}{b}<1 Leftrightarrow a<b}end{array} ight.(a,bin R;b>0))

    对作商的两个实数有限制;可用于代数式大小比较,函数或数列的单调性判断;

    性质列举

    ①对称性:(a>bLeftrightarrow b<a)

    ②传递性:(a>b,b>cRightarrow a>c)

    ③可加性:(a>bLeftrightarrow a+c>b+c)

    典例剖析

    例5求解(2leqslant 2sqrt{3^2-cfrac{|2+a|^2}{2}}leqslant 6)

    分析:约分,得到(1leqslant sqrt{3^2-cfrac{|2+a|^2}{2}} leqslant 3)

    两边平方,得到(1leqslant 9-cfrac{|2+a|^2}{2}leqslant 9)

    两边同加(-9),得到(-8=1-9leqslant -cfrac{|2+a|^2}{2}leqslant 9-9=0)

    两边同乘以(-1),得到(0leqslant cfrac{|2+a|^2}{2}leqslant 8)

    整理为(0leqslant|2+a|^2leqslant 16)

    两边同时开平方,得到(0leqslant|2+a|leqslant 4)

    (|a+2|leqslant 4),即(-4leqslant a+2leqslant 4)

    解得,(-6leqslant aleqslant 2)

  • 相关阅读:
    Codeforces 552E Vanya and Brackets(枚举 + 表达式计算)
    matlab 文件打开设置
    boot and loader
    centos6安装bochs
    Python list, dict, set, tuple
    Python 字符串
    Visual Studio 使用
    汇编语言版本的HelloWorld
    用汇编实现add函数
    使用nasm和clang
  • 原文地址:https://www.cnblogs.com/wanghai0666/p/12587035.html
Copyright © 2020-2023  润新知