• 三视图


    前言

    一、方法总结

    • 三视图还原为直观图的方法

    二、典例剖析

    例1【2019届宝鸡市高三理科数学质检Ⅱ第15题】

    一个几何体的三视图如图所示,则该几何体的体积为_____________。

    分析:由题目给定的三视图我们可以看出,原几何体的长、宽、高都是2,故我们先做一个正方体的模型备用,暂时不用标记顶点字母。

    然后观察正视图中的所有顶点,将其顶点所落的正方体中的线段用红色标记并加粗,如下图所示;

    然后观察左视图中的所有顶点,将其顶点所落的正方体中的线段用蓝色标记并加粗,如下图所示;

    再观察附视图中的所有顶点,将其顶点所落的正方体中的线段用绿色标记并加粗,如下图所示;

    最后,确定出原几何体的各个顶点。我们这样做,从图中找出来由三条有色加粗的线段交汇的点(如果仅仅由两个颜色的线段交汇的点舍弃不用),将得到的这些点相连就得到了如下图的几何体,至此,完成了由三视图到几何体的直观图的还原过程。

    如图所示,连结(BD),则原几何体即可以看成一个三棱锥(D_1-ABD)和一个四棱锥(B-CDD_1F)合体构成的一个几何体,故其体积计算如下:

    (V=V_{三棱锥D_1-ABD}+V_{四棱锥B-CDD_1F})

    (=cfrac{1}{3} imes cfrac{1}{2} imes 2 imes 2 imes 2+cfrac{1}{3} imes cfrac{1}{2} imes(1+2) imes 2 imes 2=cfrac{10}{3})

    例2【第4题】某三棱锥的侧视图、俯视图如图所示,则最长的侧棱与底面所成的角为【】

    $A.30^{circ}$ $B.45^{circ}$ $C.60^{circ}$ $D.90^{circ}$

    分析:

    由图可知,实物图为三棱锥(D-ABC),且有(AB=BC=CD=AD=2)(AE=CE=1)(angle BED=cfrac{pi}{2}),面(ADCperp)(ABC),故可求得(DE=BE=sqrt{3}),则最长的侧棱(BD)与底面所成的角为可知(angle DBE=45^{circ})

    例3【第9题】已知某四棱锥的三视图如图所示,三角形的直角边长和正方形的边长都是1,则该四棱锥的外接球的表面积为【】

    $A.3pi$ $B.6pi$ $C.9pi$ $D.12pi$

    分析:如图所示,三视图的实物图可以从正方体中得到,是四棱锥(D-A_1BCD_1),故其外接球的直径为(A_1C=BD_1=sqrt{3}),则半径为(R=cfrac{sqrt{3}}{2}),表面积为(S=4pi R^2=3pi),故选(A)

  • 相关阅读:
    OpenWAF学习笔记(四)—— API-接入规则
    OpenWAF学习笔记(三)—— 调用API时403?
    OpenWAF学习笔记(二)—— 入门
    OpenWAF学习笔记(一)—— 安装
    SQL Server获取数据库表、视图、存储过程数量及名称
    获取真实IP地址——代理背后的终端ip地址
    博客园美化-添加看板娘
    强密码验证-大小写字母、数字、特殊字符、长度
    【c++面试总结】
    【一天一道算法题】 两个字符串相乘
  • 原文地址:https://www.cnblogs.com/wanghai0666/p/10448112.html
Copyright © 2020-2023  润新知