• 三角函数习题02


    前言

    典例剖析

    例1【2015(cdot)全国卷Ⅰ】在平面四边形(ABCD)中,(angle A=angle B=angle C=75^{circ})(BC=2),则(AB)的取值范围是___________。

    分析:本题目非常特别,依据题意我们做出的图形是平面四边形,

    当我们将边(AD)平行移动时,题目的已知条件都没有改变,故想到将此静态图变化为动态图,

    平行移动(AD)时,我们看到了两个临界位置,即四边形变化为三角形的两个状态,

    其一是四边形变化为三角形(ABF),此时应该有(BF<AB)

    其二是四边形变化为三角形(ABE),此时应该有(BE>AB)

    故动态的边(AB)的范围是(BF<AB<BE),从而求解。

    解答:如图所示,延长(BA)(CD)交于(E),过(C)(CF//AD)(AB)(F),则(BF<AB<BE)

    在等腰三角形(CFB)中,(angle FCB=30^{circ})(CF=BC=2),由余弦定理得到(BF=sqrt{6}-sqrt{2})

    在等腰三角形(ECB)中,(angle CEB=30^{circ})(angle ECB=75^{circ})(BE=CE,BC=2)

    由正弦定理得到(BE=sqrt{6}+sqrt{2})

    (sqrt{6}-sqrt{2}<AB<sqrt{6}+sqrt{2})

    解后反思引申:

    1、求(CD)的取值范围;

    分析:由上述的动态图可知,(0<CD<CE=BE=sqrt{6}+sqrt{2})

    2、求(AD)的取值范围;

    分析:由上述的动态图可知,(0<AD<CF=BC=2)

    3、求四边形(ABCD)的周长的取值范围;

    分析:四边形(ABCD)的周长介于(Delta BCF)的周长和(Delta BCE)的周长之间,

    故其取值范围是((4+sqrt{6}-sqrt{2},2(sqrt{6}+sqrt{2})+2))

    4、求四边形(ABCD)的面积的取值范围;

    分析:四边形(ABCD)的面积介于(Delta BCF)的面积和(Delta BCE)的面积之间,

    (S_{Delta BCF}=cfrac{1}{2} imes 2 imes 2 imes sin30^{circ}=1)

    (S_{Delta BCE}=cfrac{1}{2} imes (sqrt{6}+sqrt{2}) imes (sqrt{6}+sqrt{2}) imes sin30^{circ}=2+sqrt{3})

    故其取值范围是((1,2+sqrt{3}))

    例2【2017(cdot)广东汕头一模】【求面积的最大值】已知(Delta ABC)的内角(A,B,C)的对边分别是(a,b,c),且满足(b=c)(cfrac{b}{a}=cfrac{1-cosB}{cosA}),若点(O)(Delta ABC)外的一点,(angle AOB= heta(0< heta<pi))(OA=2)(OB=1),则四边形(OACB)面积的最大值是【】

    $A.cfrac{4+5sqrt{3}}{4}$ $B.cfrac{8+5sqrt{3}}{4}$ $C.3$ $D.cfrac{4+5sqrt{3}}{4}$

    分析:由(cfrac{b}{a}=cfrac{sinB}{sinA}=cfrac{1-cosB}{cosA})

    得到(sinBcosA+cosBsinA=sinA),即(sin(A+B)=sinA)

    (sinC=sinA),即(A=C)

    (a=b=c),为等边三角形。

    (Delta AOB)中,(AB^2=2^2+1^2-2cdot 2cdot 1cdot cos heta=5-4cos heta)

    (S_{OACB}=S_{Delta AOB}+S_{Delta ABC})

    (=cfrac{1}{2}cdot 2cdot 1cdot sin heta+cfrac{sqrt{3}}{4}cdot AB^2)

    (=sin heta+cfrac{sqrt{3}}{4}(5-4cos heta)=2sin( heta-cfrac{pi}{3})+cfrac{5sqrt{3}}{4})

    ( heta-cfrac{pi}{3}=cfrac{pi}{2})时,即( heta=cfrac{5pi}{6}in (0,pi))时,四边形的面积有最大值,

    (S_{max}=2+cfrac{5sqrt{3}}{4}=cfrac{8+5sqrt{3}}{4}),故选(B)

    例3【2017(cdot)皖北协作区3月联考】【求取值范围】如图,(angle BAC=cfrac{2pi}{3})(P)(angle BAC)内部一点,过点(P)的直线与(angle BAC)的两边交于点(B、C),且(PAperp AC)(AP=sqrt{3})

    (1)若(AB=3),求(PC)

    分析:在(Delta ABP)中,(angle BAP=30^{circ})(AB=3)(AP=sqrt{3})

    由余弦定理得到(BP=sqrt{3}),故(angle BAP=angle PBA=30^{circ})

    (angle APC=60^{circ}),在(RtDelta APC)中,可得(PC=2sqrt{3})

    (2)求(cfrac{1}{PB}+cfrac{1}{PC})的取值范围。

    分析:设(angle PBA= heta),则( hetain (0,cfrac{pi}{3}))

    (说明:当过点(P)的直线和(AB)平行时,( heta=0);当过点(P)的直线和(AC)平行时,( heta=cfrac{pi}{3}))

    (Delta ABP)中,(angle BAP=30^{circ})(angle PBA= heta)(AP=sqrt{3})

    故由正弦定理得到(cfrac{PB}{sin30^{circ}}=cfrac{sqrt{3}}{sin heta}),即(PB=cfrac{cfrac{sqrt{3}}{2}}{sin heta})

    (RtDelta APC)中,(angle CPA= heta+cfrac{pi}{6})(PC=cfrac{sqrt{3}}{cos( heta+cfrac{pi}{6})})

    (cfrac{1}{PB}+cfrac{1}{PC}=cfrac{2sin heta}{sqrt{3}}+cfrac{cos( heta+cfrac{pi}{6})}{sqrt{3}})

    (=cfrac{1}{sqrt{3}}(cfrac{3}{2}sin heta+cfrac{sqrt{3}}{2}cos heta))

    (=sin( heta+cfrac{pi}{6})),且( hetain (0,cfrac{pi}{3}))

    (cfrac{1}{2}<sin( heta+cfrac{pi}{6})<1)

    例4函数(f(x)=2cos(omega x+phi)(omega eq 0))对任意(x)都有(f(cfrac{pi}{4}+x)=f(cfrac{pi}{4}-x))成立,则(f(cfrac{pi}{4}))的值为【】

    $A.2或0$ $B.-2或2$ $C.0$ $D.-2或0$

    分析:由任意(x)都有(f(cfrac{pi}{4}+x)=f(cfrac{pi}{4}-x))成立,

    可知(x=cfrac{pi}{4})为函数的一条对称轴,

    而正弦型或余弦型函数在对称轴处必然会取到最值,

    (f(cfrac{pi}{4})=pm 2),选B。

    解后反思:此题目如果不注意函数的性质,往往会想到求(omega)(phi),这样思路就跑偏了。

    例4已知(cfrac{pi}{2}<eta<alpha<cfrac{3pi}{4})(cos(alpha-eta)=cfrac{12}{13})(sin(alpha+eta)=-cfrac{3}{5}), 则(sinalpha+cosalpha)的值为_____。

    分析:先由给定的不等式求解(alphapm eta)的范围,以便于求解其余名函数的值,为后续的计算打基础。

    (cfrac{pi}{2}<eta<alpha<cfrac{3pi}{4})

    得到(cfrac{pi}{2}<alpha<cfrac{3pi}{4})(cfrac{pi}{2}<eta<cfrac{3pi}{4})

    (pi<alpha+eta<cfrac{3pi}{2}),由(sin(alpha+eta)=-cfrac{3}{5})

    得到(cos(alpha+eta)=-cfrac{4}{5})

    又由(cfrac{pi}{2}<alpha<cfrac{3pi}{4})(-cfrac{3pi}{4}<-eta<-cfrac{pi}{2}),及(alpha-eta>0)

    得到(0<alpha-eta<cfrac{pi}{4}),由(cos(alpha-eta)=cfrac{12}{13})

    得到(sin(alpha-eta)=cfrac{5}{13})

    (sin2alpha=sin[(alpha+eta)+(alpha-eta)])

    (=sin(alpha+eta)cos(alpha-eta)+cos(alpha+eta)sin(alpha-eta)=-cfrac{56}{65})

    ((sinalpha+cosalpha)^2=1+sin2alpha=cfrac{9}{65})

    又由于(cfrac{pi}{2}<eta<alpha<cfrac{3pi}{4}),借助三角函数线可知

    则有(sinalpha+cosalpha>0)

    (sinalpha+cosalpha=sqrt{cfrac{9}{65}}=cfrac{3sqrt{65}}{65})

    例6【2018高考一卷第16题】求(f(x)=2sinx+sin2x)的最小值。

    法1:(f'(x)=2cosx+2cos2x=2cosx+2(2cos^2x-1))

    (=4cos^2x+2cosx-2=(2cosx+2)(2cosx-1))

    (=4(cosx+1)(cosx-cfrac{1}{2}))

    注意到(cosx+1ge 0)恒成立,故

    (f'(x)>0)得到,(cosx>cfrac{1}{2}),令(f'(x)<0)得到,(cosx<cfrac{1}{2})

    (xin [2kpi-cfrac{5pi}{3},2kpi-cfrac{pi}{3}](kin Z))时,函数(f(x))单调递减;

    (xin [2kpi-cfrac{pi}{3},2kpi+cfrac{pi}{3}](kin Z))时,函数(f(x))单调递增;

    故当(x=2kpi-cfrac{pi}{3}(kin Z))时,(f(x)_{min}=f(2kpi-cfrac{pi}{3})=-cfrac{3sqrt{3}}{2})

    法2:待后补充,比如图像法等。

    例7【2019届高三理科数学课时作业用题】在斜三角形(ABC)中,(sinA=-sqrt{2}cosBcosC),且(tanBtanC=1-sqrt{2}),则角(A)的大小为【】

    $A.cfrac{pi}{3}$ $B.cfrac{pi}{2}$ $C.cfrac{pi}{4}$ $D.cfrac{3pi}{4}$

    法1分析:由(sinA=sin(B+C)=sinBcosC+cosBsinC=-sqrt{2}cosBcosC)

    (cfrac{sinBcosC+cosBsinC}{cosBcosC}=tanB+tanC=-sqrt{2})

    又由于(tanBtanC=1-sqrt{2}),故(-tanA=tan(B+C)=cfrac{tanB+tanC}{1-tanBtanC})

    (-tanA=cfrac{-sqrt{2}}{1-(1-sqrt{2})}=-1),故(tanA=1),又(Ain (0,pi))

    (A=cfrac{pi}{4}),故选(A)

    法2分析:由(cos(B+C)=cosBcosC-sinBsinC=-cosA)

    (cosBcosC=sinBsinC-cosA),两边同乘以((-sqrt{2})),得到

    (-sqrt{2}cosBcosC=sqrt{2}sinBsinC+sqrt{2}cosA),即(sqrt{2}sinBsinC+sqrt{2}cosA=sinA)

    (sinBsinC=cfrac{sqrt{2}cosA-sinA}{sqrt{2}})①,

    (cosBcosC=cfrac{sinA}{-sqrt{2}}=-cfrac{sqrt{2}}{2}sinA)②,

    由①/②得到,(tanBcdot tanC=cfrac{frac{sqrt{2}cosA-sinA}{sqrt{2}}}{-cfrac{sqrt{2}}{2}sinA}=1-sqrt{2})

    化简得到(sinA=cosA),即(tanA=1),由(Ain(0,pi))

    故得到(A=cfrac{pi}{4}),故选(A)

    例8【2016天津高考文科第8题】已知(f(x)=sin^2cfrac{omega x}{2}+cfrac{1}{2}sinomega x-cfrac{1}{2}(omega>0))(xin R),若(f(x))在区间((pi,2pi))内没有零点,则(omega)的取值范围是【D】

    $A.(0,cfrac{1}{8}]$ $B.(0,cfrac{1}{4}]cup [cfrac{5}{8},1)$ $C.(0,cfrac{5}{8}]$ $D.(0,cfrac{1}{8}]cup [cfrac{1}{4},cfrac{5}{8}]$

    分析:(f(x)=cfrac{1-cosomega x}{2}+cfrac{1}{2}sinomega x-cfrac{1}{2}=cfrac{1}{2}(sinomega x-cosomega x))

    (=cfrac{sqrt{2}}{2}sin(omega x-cfrac{pi}{4}))

    法1:补集法,从数的角度入手分析,假设(f(x))在区间((pi,2pi))内有零点(x_0),使得(f(x)=cfrac{sqrt{2}}{2}sin(omega x_0-cfrac{pi}{4})=0)

    (omega x_0-cfrac{pi}{4}=kpi(kin Z)),即(x_0=cfrac{kpi}{omega}+cfrac{pi}{4omega})

    (x_0=cfrac{(4k+1)pi}{4omega}),又(pi<x_0<2pi)

    (pi<cfrac{4k+1}{4omega}<2pi(kin Z)),即(left{egin{array}{l}{4omega<4k+1}\{8omega>4k+1}end{array} ight.)

    由于(omega>0),故给(k)赋值从(k=0)开始,

    ①当(k=0)时,(left{egin{array}{l}{4omega<1}\{8omega>1}end{array} ight.),即(cfrac{1}{8}<omega<cfrac{1}{4})

    ②当(k=1)时,(left{egin{array}{l}{4omega<4+1}\{8omega>4+1}end{array} ight.),即(cfrac{5}{8}<omega<cfrac{5}{4})

    ③当(k=2)时,(left{egin{array}{l}{4omega<8+1}\{8omega>8+1}end{array} ight.),即(cfrac{9}{8}<omega<cfrac{9}{4})

    ④当(k=3)时,(left{egin{array}{l}{4omega<12+1}\{8omega>12+1}end{array} ight.),即(cfrac{13}{8}<omega<cfrac{13}{4})

    ⑤当(k=4,cdots)时,(cdots)

    以上情形取并集,得到当函数(f(x))在区间((pi,2pi))内有零点(x_0)时,(omega)的取值范围是((cfrac{1}{8},cfrac{1}{4})cup(cfrac{5}{8},+infty))

    故函数(f(x))在区间((pi,2pi))内没有零点时,(omega)的取值范围是((0,cfrac{1}{8}]cup[cfrac{1}{4},cfrac{5}{8}]),故选(D)

    法2:直接法,从数的角度入手分析,函数(f(x))在区间((pi,2pi))内没有零点,则(sin(omega x_0-cfrac{pi}{4})=0)在区间((pi,2pi))内无解,

    (kpi<omega x-cfrac{pi}{4}<kpi+pi(kin Z)),即(kpi+cfrac{pi}{4}<omega x<kpi+cfrac{5pi}{4}(kin Z))

    (cfrac{kpi}{omega}+cfrac{pi}{4omega}<x_0<cfrac{kpi}{omega}+cfrac{5pi}{4omega})

    (cfrac{(4k+1)pi}{4omega}<x<cfrac{(4k+5)pi}{4omega})恒成立,由于(xin (pi,2pi))

    (cfrac{(4k+1)pi}{4omega}leq pi)(2pileq cfrac{(4k+5)pi}{4omega})

    (left{egin{array}{l}{4omegage 4k+1}\{8omegaleq 4k+5}end{array} ight.)

    ①当(k=-1)时,(4omegage -3)(8omega leq 1),解得(0<omegaleq cfrac{1}{8})

    ②当(k=0)时,(4omegage 1)(8omega leq 5),解得(cfrac{1}{4}leq omegaleq cfrac{5}{8})

    ③当(k=1)时,(4omegage 5)(8omega leq 9),解得(cfrac{5}{4}leq omegaleq cfrac{9}{8}),实质为空集;

    ④当(k=2)时,(4omegage 9)(8omega leq 13),解得(cfrac{9}{4}leq omegaleq cfrac{13}{8}),实质为空集;

    ⑤当(k=3,cdots)时,等等,解集都是空集;

    综上所述,函数(f(x))在区间((pi,2pi))内没有零点时,(omega)的取值范围是((0,cfrac{1}{8}]cup[cfrac{1}{4},cfrac{5}{8}]),故选(D)

    法3:高考解法,从数的角度入手分析,接上述解法,得到

    (sin(omega x_0-cfrac{pi}{4})=0)在区间((pi,2pi))内无解,

    (x=cfrac{kpi+frac{pi}{4}}{omega} otin (pi,2pi))

    (omega otin (cfrac{1}{8},cfrac{1}{4})cup (cfrac{5}{8},cfrac{5}{4})cup (cfrac{9}{8},cfrac{9}{4})cupcdots = (cfrac{1}{8},cfrac{1}{4})cup (cfrac{5}{8},+infty))

    由于函数(f(x))在区间((pi,2pi))内没有零点,(omega)的取值范围是((0,cfrac{1}{8}]cup[cfrac{1}{4},cfrac{5}{8}]),故选(D)

    法4:如下图所示,从形的角度入手分析:

    要使得函数在((pi,2pi))内没有零点,则有以下情形成立:

    (2pileq cfrac{pi}{4omega}),解得(0<omegaleq cfrac{1}{8})

    (left{ egin{array}{l}{ cfrac{pi}{4omega}leq pi }\ {2pi leq cfrac{5pi}{4omega}}end{array} ight.) ,解得$ cfrac{1}{4}<omega leq cfrac{5}{8}$;

    (left{egin{array}{l}{cfrac{5pi}{4omega}leq pi}\{2pileqcfrac{9pi}{4omega}} end{array} ight.),解得(cfrac{5}{4}<omegaleq cfrac{9}{8});即(omegain varnothing)

    (left{egin{array}{l}{cfrac{9pi}{4omega}leq pi}\{2pileqcfrac{13pi}{4omega}} end{array} ight.),解得(cfrac{9}{4}<omegaleq cfrac{13}{8});即(omegain varnothing)

    (cdots),解得(omegain varnothing)

    综上所述,(omega)的取值范围是((0,cfrac{1}{8}]cup[cfrac{1}{4},cfrac{5}{8}]),故选(D)

    例9【2019届高三理科数学题】若函数(f(x)=2sinomega x(omega>0))在区间((0,2pi))上恰有两个极大值和一个极小值,则(omega)的取值范围是【A】

    $A.(cfrac{5}{4},cfrac{7}{4}]$ $B.(cfrac{3}{4},cfrac{5}{4}]$ $C.(1,cfrac{5}{4}]$ $D.(cfrac{3}{4},cfrac{5}{4}]$

    分析:由题目可知,(left{egin{array}{l}{cfrac{5}{4}cdot T<2pi ①}\{2pileq cfrac{7}{4}cdot T②}end{array} ight.)

    注意由于是在开区间((0,2pi))上,故①没有等号,而②有等号;

    (left{egin{array}{l}{cfrac{5}{4}cdot cfrac{2pi}{omega}<2pi }\{2pileq cfrac{7}{4}cdot cfrac{2pi}{omega}}end{array} ight.)

    解得(cfrac{5}{4}<omegaleq cfrac{7}{4})。故选(A)

  • 相关阅读:
    第一章 简介(待续)
    第十六章 漫话网站架构师(待续)
    第十五章 网站架构师职场攻略(待续)
    第十四章 架构师领导艺术(待续)
    第十三章 大型网站典型故障分析案例(待续)
    上帝造题的七分钟2/花神游历各国/GSS4 线段树维护区间开方 By cellur925
    LuoguP1606 [USACO07FEB]荷叶塘Lilypad Pond 【最短路】By cellur925
    NOIp2013 车站分级 【拓扑排序】By cellur925
    NOI题库--盒子和小球系列 By cellur925
    关于对动态规划的思考 【转】
  • 原文地址:https://www.cnblogs.com/wanghai0666/p/10138930.html
Copyright © 2020-2023  润新知