为什么选择跳表
目前经常使用的平衡数据结构有:B树,红黑树,AVL树,Splay Tree, Treep等。
想象一下,给你一张草稿纸,一只笔,一个编辑器,你能立即实现一颗红黑树,或者AVL树
出来吗? 很难吧,这需要时间,要考虑很多细节,要参考一堆算法与数据结构之类的树,
还要参考网上的代码,相当麻烦。
用跳表吧,跳表是一种随机化的数据结构,目前开源软件 Redis 和 LevelDB 都有用到它,
它的效率和红黑树以及 AVL 树不相上下,但跳表的原理相当简单,只要你能熟练操作链表,
就能轻松实现一个 SkipList。
有序表的搜索
考虑一个有序表:
从该有序表中搜索元素 < 23, 43, 59 > ,需要比较的次数分别为 < 2, 4, 6 >,总共比较的次数
为 2 + 4 + 6 = 12 次。有没有优化的算法吗? 链表是有序的,但不能使用二分查找。类似二叉
搜索树,我们把一些节点提取出来,作为索引。得到如下结构:
这里我们把 < 14, 34, 50, 72 > 提取出来作为一级索引,这样搜索的时候就可以减少比较次数了。
我们还可以再从一级索引提取一些元素出来,作为二级索引,变成如下结构:
这里元素不多,体现不出优势,如果元素足够多,这种索引结构就能体现出优势来了。
跳表
下面的结构是就是跳表:
其中 -1 表示 INT_MIN, 链表的最小值,1 表示 INT_MAX,链表的最大值。
跳表具有如下性质:
(1) 由很多层结构组成
(2) 每一层都是一个有序的链表
(3) 最底层(Level 1)的链表包含所有元素
(4) 如果一个元素出现在 Level i 的链表中,则它在 Level i 之下的链表也都会出现。
(5) 每个节点包含两个指针,一个指向同一链表中的下一个元素,一个指向下面一层的元素。
跳表的搜索
例子:查找元素 117
(1) 比较 21, 比 21 大,往后面找
(2) 比较 37, 比 37大,比链表最大值小,从 37 的下面一层开始找
(3) 比较 71, 比 71 大,比链表最大值小,从 71 的下面一层开始找
(4) 比较 85, 比 85 大,从后面找
(5) 比较 117, 等于 117, 找到了节点。
具体的搜索算法如下:
- /* 如果存在 x, 返回 x 所在的节点,
- * 否则返回 x 的后继节点 */
- find(x)
- {
- p = top;
- while (1) {
- while (p->next->key < x)
- p = p->next;
- if (p->down == NULL)
- return p->next;
- p = p->down;
- }
- }
跳表的插入
先确定该元素要占据的层数 K(采用丢硬币的方式,这完全是随机的)
然后在 Level 1 ... Level K 各个层的链表都插入元素。
例子:插入 119, K = 2
如果 K 大于链表的层数,则要添加新的层。
例子:插入 119, K = 4
丢硬币决定 K
插入元素的时候,元素所占有的层数完全是随机的,通过一下随机算法产生:
- int random_level()
- {
- K = 1;
- while (random(0,1))
- K++;
- return K;
- }
相当与做一次丢硬币的实验,如果遇到正面,继续丢,遇到反面,则停止,
用实验中丢硬币的次数 K 作为元素占有的层数。显然随机变量 K 满足参数为 p = 1/2 的几何分布,
K 的期望值 E[K] = 1/p = 2. 就是说,各个元素的层数,期望值是 2 层。
跳表的高度。
n 个元素的跳表,每个元素插入的时候都要做一次实验,用来决定元素占据的层数 K,
跳表的高度等于这 n 次实验中产生的最大 K,待续。。。
跳表的空间复杂度分析
根据上面的分析,每个元素的期望高度为 2, 一个大小为 n 的跳表,其节点数目的
期望值是 2n。
跳表的删除
在各个层中找到包含 x 的节点,使用标准的 delete from list 方法删除该节点。
例子:删除 71
#include <stdio.h> #include <stdlib.h> #include <malloc.h> typedef int key_t; typedef int value_t; typedef struct node_t { key_t key; value_t value; struct node_t *forward[]; } node_t; typedef struct skiplist { int level; int length; node_t *header; } list_t; #define MAX_LEVEL 16 #define SKIPLIST_P 0.25 node_t* slCreateNode(int level, key_t key, value_t value) { node_t *n = (node_t *)malloc(sizeof(node_t) + level * sizeof(node_t*)); if(n == NULL) return NULL; n->key = key; n->value = value; return n; } list_t* slCreate(void) { list_t *l = (list_t *)malloc(sizeof(list_t)); int i = 0; if(l == NULL) return NULL; l->length = 0; l->level = 0; l->header = slCreateNode(MAX_LEVEL - 1, 0, 0); for(i = 0; i < MAX_LEVEL; i++) { l->header->forward[i] = NULL; } return l; } int randomLevel(void) { int level = 1; while ((rand()&0xFFFF) < (SKIPLIST_P * 0xFFFF)) level += 1; return (level<MAX_LEVEL) ? level : MAX_LEVEL; } value_t* slSearch(list_t *list, key_t key) { node_t *p = list->header; int i; for(i = list->level - 1; i >= 0; i--) { while(p->forward[i] && (p->forward[i]->key <= key)){ if(p->forward[i]->key == key){ return &p->forward[i]->value; } p = p->forward[i]; } } return NULL; } int slDelete(list_t *list, key_t key) { node_t *update[MAX_LEVEL]; node_t *p = list->header; node_t *last = NULL; int i = 0; for(i = list->level - 1; i >= 0; i--){ while((last = p->forward[i]) && (last->key < key)){ p = last; } update[i] = p; } if(last && last->key == key){ for(i = 0; i < list->level; i++){ if(update[i]->forward[i] == last){ update[i]->forward[i] = last->forward[i]; } } free(last); for(i = list->level - 1; i >= 0; i--){ if(list->header->forward[i] == NULL){ list->level--; } } list->length--; }else{ return -1; } return 0; } int slInsert(list_t *list, key_t key, value_t value) { node_t *update[MAX_LEVEL]; node_t *p, *node = NULL; int level, i; p = list->header; for(i = list->level - 1; i >= 0; i--){ while((node = p->forward[i]) && (node->key < key)){ p = node; } update[i] = p; } if(node && node->key == key){ node->value = value; return 0; } level = randomLevel(); if (level > list->level) { for(i = list->level; i < level; i++){ update[i] = list->header; } list->level = level; } node = slCreateNode(level, key, value); for(i = 0; i < level; i++){ node->forward[i] = update[i]->forward[i]; update[i]->forward[i] = node; } list->length++; return 0; } int main(int argc, char **argv) { list_t *list = slCreate(); node_t *p = NULL; value_t *val = NULL; //插入 for(int i = 1; i <= 15; i++){ slInsert(list, i, i*10); } //删除 if(slDelete(list, 12) == -1){ printf("delete:not found "); }else{ printf("delete:delete success "); } //查找 val = slSearch(list, 1); if(val == NULL){ printf("search:not found "); }else{ printf("search:%d ", *val); } //遍历 p = list->header->forward[0]; for(int i = 0; i < list->length; i++){ printf("%d,%d ", p->key, p->value); p = p->forward[0]; } getchar(); return 0; }
http://www.cxphp.com/?p=234(Redis中c语言的实现)
http://imtinx.iteye.com/blog/1291165
http://kenby.iteye.com/blog/1187303
http://bbs.bccn.net/thread-228556-1-1.html
http://blog.csdn.net/xuqianghit/article/details/6948554(leveldb源码)