• apache.zookeeper-3.4与apache.kafka-2.11的安装


                                           zookeeper与Kafka集群安装

    集群安装以三台机器(虚拟机,物理机等等)为例子:

    192.168.200.100 kafka01   (主节点)
    
    192.168.200.101 kafka02   (从节点)
    
    192.168.200.102 kafka03   (从节点)

    一、进入集群kafka01(主节点)节点配置hosts文件:

    vim /etc/hosts #打开hosts为每个IP配置别名,相当于java中配置变量,以后只需别名
    
    192.168.200.100 kafka01
    
    192.168.200.101 kafka02
    
    192.168.200.102 kafka03

    在kafka01执行一下操作,将其分发到不同的主机上

    scp -r /etc/hosts root@kafka02:/etc/hosts
    
    scp -r /etc/hosts root@kafka03:/etc/hosts

    二、将三台主机配置免密

    ssh-keygen -t rsa    #三台机器都执行该命令,然后一直回车至结束。

     

    登陆kafka01将密匙传输其他机器(包括本机):

    ssh-copy-id kafka01
    
    ssh-copy-id kafka02
    
    ssh-copy-id kafka03

    登陆kafka02将密匙传输其他机器(包括本机):

    ssh-copy-id kafka01
    
    ssh-copy-id kafka02
    
    ssh-copy-id kafka03

    登陆kafka03将密匙传输其他机器(包括本机):

    ssh-copy-id kafka01
    
    ssh-copy-id kafka02
    
    ssh-copy-id kafka03

    注:下面的配置中使用的都为IP,生产环境中尽力使用别名代替,这样如果IP发生变化只需要修改hosts就可以了。

     

    安装JDK(可以使用rpm包或者tar.gz包):

    如果使用jdk.rpm包使用,不需要配置环境变量(会安装在/usr/bin 目录下):

    rpm -ivh jdk.rpm    #完成后使用 java 进行测试

     

    jdk.tar.gz 包需要配置环境变量:

    先解压包:
    jar -zxvf xxx.tar.gz
    
    执行vi /etc/profile 修改环境变量,新增以下代码:
    
    export JAVA_HOME=/usr/local/java/jdk1.8.0_181
    
    export JRE_HOME=$JAVA_HOME/jre
    
    export CLASSPATH=.:$JAVA_HOME/jre/lib/rt.jar:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
    
    export PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
    
    刷新环境变量:source /etc/profile

     

     

    安装zk:

    将zookeeper解压到目录:tar -zxvf zookeeper-3.4.13.tar.gz -C /usr/local
    
    进入/usr/local目录下修改zookeeper名称:mv zookeeper-3.4.13/ zookeeper
    
    在zookeeper安装目录下新建保存数据的目录:mkdir -p zookeeper/data
    
    在zookeeper安装目录下新建日志目录:mkdir -p zookeeper/dataLog
    
    配置环境变量:vim /etc/profile
    
    添加配置如下:
    
    export ZK_HOME=/usr/local/zookeeper
    
    export PATH=$PATH:$ZK_HOME/bin
    
    刷新环境变量:source /etc/profile

    节点配置:

    (1)kafka01(192.168.200.100)

    进入配置目录:zookeeper/conf,复制一个zoo.cfg文件:
    
    cp -f zoo_sample.cfg zoo.cfg
    
    配置如下:
    
    dataDir=/usr/local/zookeeper/data  #就是刚刚创建的两个目录
    
    dataLogDir=/usr/local/zookeeper/dataLog
    
    #在本节点时就使用0.0.0.0
    
    server.1=0.0.0.0:2888:3888  
    
    server.2=192.168.200.101:2888:3888
    
    server.3=192.168.200.102:2888:3888
    
    进入data目录:cd /usr/local/zookeepe/data
    
    生成myid文件(用于选举leader):echo "1" >myid

    (2) kafka02(192.168.200.101)

    进入配置目录:zookeeper/conf,复制一个zoo.cfg文件:
    
    cp -f zoo_sample.cfg zoo.cfg
    
    配置如下:
    
    dataDir=/usr/local/zookeeper/data
    
    dataLogDir=/usr/local/zookeeper/dataLog
    
    server.1=192.168.200.100:2888:3888
    
    server.2=0.0.0.0:2888:3888
    
    server.3=192.168.200.102:2888:3888
    
    进入data目录:cd /usr/local/zookeeper/ data
    
    生成myid文件(每个节点下的myid都是唯一的):echo "2" >myid

    (3) kafka03(192.168.200.102)

    进入配置目录:zookeeper/conf,复制一个zoo.cfg文件:
    
    cp -f zoo_sample.cfg zoo.cfg
    
    配置如下:
    
    dataDir=/usr/local/zookeeper/data
    
    dataLogDir=/usr/local/zookeeper/dataLog
    
    server.1=192.168.200.100:2888:3888
    
    server.2=192.168.200.101:2888:3888
    
    server.3=0.0.0.0:2888:3888
    
    进入data目录:cd /usr/local/zookeeper/data
    
    生成myid文件:echo "3" >myid

    以上步骤完成,全部zookeeper节点配置完成,执行以下命令启动集群:

    zkServer.sh start可以通过zkServer.sh status命令查看集群状态,zkServer.sh stop命令可以停止集群。
    
    或者通过nestat -lnp | grep 2181 查看该进程是否存在(因为zookeeper的端口配置为2181,该命令是指查询占用端口2181的进程)
    
    或使用jps命令查看(使用自带的open java的无法使用该功能)

    配置Kafka:

    下载并解压kafka压缩包:

    配置vi kafka/config/server.properties如下:
    
    # Licensed to the Apache Software Foundation (ASF) under one or more
    
    # contributor license agreements.  See the NOTICE file distributed with
    
    # this work for additional information regarding copyright ownership.
    
    # The ASF licenses this file to You under the Apache License, Version 2.0
    
    # (the "License"); you may not use this file except in compliance with
    
    # the License.  You may obtain a copy of the License at
    
    #
    
    #    http://www.apache.org/licenses/LICENSE-2.0
    
    #
    
    # Unless required by applicable law or agreed to in writing, software
    
    # distributed under the License is distributed on an "AS IS" BASIS,
    
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    
    # See the License for the specific language governing permissions and
    
    # limitations under the License.
    
    # see kafka.server.KafkaConfig for additional details and defaults
    
    
    
    ############################# Server Basics #############################
    
    
    
    # The id of the broker. This must be set to a unique integer for each broker.
    
    broker.id=1   #每个节点id不能相同
    
    
    
    ############################# Socket Server Settings #############################
    
    
    
    # The port the socket server listens on
    
    #kafka开启服务的端口号
    
    port=9092  
    
    
    
    # Hostname the broker will bind to. If not set, the server will bind to all interfaces
    
    #改配置使用本节点IP,不能使用别名否则java无法访问kafka,亲测- - 。
    
    host.name=192.168.200.100 
    
    
    
    # Hostname the broker will advertise to producers and consumers. If not set, it uses the
    
    # value for "host.name" if configured.  Otherwise, it will use the value returned from
    
    # java.net.InetAddress.getCanonicalHostName().
    
    #advertised.host.name=<hostname routable by clients>
    
    
    
    # The port to publish to ZooKeeper for clients to use. If this is not set,
    
    # it will publish the same port that the broker binds to.
    
    #advertised.port=<port accessible by clients>
    
    
    
    # The number of threads handling network requests
    
    num.network.threads=3
    
    
    
    # The number of threads doing disk I/O
    
    num.io.threads=8
    
    
    
    # The send buffer (SO_SNDBUF) used by the socket server
    
    socket.send.buffer.bytes=102400
    
    
    
    # The receive buffer (SO_RCVBUF) used by the socket server
    
    socket.receive.buffer.bytes=102400
    
    
    
    # The maximum size of a request that the socket server will accept (protection against OOM)
    
    socket.request.max.bytes=104857600
    
    
    
    
    
    ############################# Log Basics #############################
    
    
    
    # A comma seperated list of directories under which to store log files
    
    #日志文件的保存路径
    
    log.dirs=/tmp/kafka-logs
    
    
    
    # The default number of log partitions per topic. More partitions allow greater
    
    # parallelism for consumption, but this will also result in more files across
    
    # the brokers.
    
    #主题下分区的备份数,按需求设置
    
    num.partitions=2
    
    
    
    # The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
    
    # This value is recommended to be increased for installations with data dirs located in RAID array.
    
    #消息的备份数
    
    num.recovery.threads.per.data.dir=1
    
    
    
    ############################# Log Flush Policy #############################
    
    
    
    # Messages are immediately written to the filesystem but by default we only fsync() to sync
    
    # the OS cache lazily. The following configurations control the flush of data to disk.
    
    # There are a few important trade-offs here:
    
    #    1. Durability: Unflushed data may be lost if you are not using replication.
    
    #    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
    
    #    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to exceessive seeks.
    
    # The settings below allow one to configure the flush policy to flush data after a period of time or
    
    # every N messages (or both). This can be done globally and overridden on a per-topic basis.
    
    
    
    # The number of messages to accept before forcing a flush of data to disk
    
    #log.flush.interval.messages=10000
    
    
    
    # The maximum amount of time a message can sit in a log before we force a flush
    
    #log.flush.interval.ms=1000
    
    
    
    ############################# Log Retention Policy #############################
    
    
    
    # The following configurations control the disposal of log segments. The policy can
    
    # be set to delete segments after a period of time, or after a given size has accumulated.
    
    # A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
    
    # from the end of the log.
    
    
    
    # The minimum age of a log file to be eligible for deletion
    
    #segment的日志保存最大时间,超过将被删除
    
    log.retention.hours=168
    
    
    
    # A size-based retention policy for logs. Segments are pruned from the log as long as the remaining
    
    # segments don't drop below log.retention.bytes.
    
    #log.retention.bytes=1073741824
    
    
    
    # The maximum size of a log segment file. When this size is reached a new log segment will be created.
    
    log.segment.bytes=1073741824
    
    
    
    # The interval at which log segments are checked to see if they can be deleted according
    
    # to the retention policies
    
    log.retention.check.interval.ms=300000
    
    
    
    # By default the log cleaner is disabled and the log retention policy will default to just delete segments after their retention expires.
    
    # If log.cleaner.enable=true is set the cleaner will be enabled and individual logs can then be marked for log compaction.
    
    log.cleaner.enable=false
    
    
    
    export HBASE_MANAGES_ZK=false
    
    offsets.storage=kafka
    
    dual.commit.enabled=true
    
    delete.topic.enable=true
    
    
    
    ############################# Zookeeper #############################
    
    
    
    # Zookeeper connection string (see zookeeper docs for details).
    
    # This is a comma separated host:port pairs, each corresponding to a zk
    
    # server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
    
    # You can also append an optional chroot string to the urls to specify the
    
    # root directory for all kafka znodes.
    
    #之前zookeeper配置的节点,可以使用别名,亲测
    
    zookeeper.connect=192.168.200.100:2181,192.168.200.101:2181,192.168.200.102:2181
    
    
    
    # Timeout in ms for connecting to zookeeper
    
    #kafka连接zookeeper的超时间
    
    zookeeper.connection.timeout.ms=6000
    
    

    以下命令全部在kafka安装目录执行开启kafka集群:

    启动kafka不产生日志并且后台运行:
    
    &:指命令运行完后,按下回车,可以继续执行别的命令,该命令会在后台执行,但是关闭该会话窗口,会导致命令终止。如果想要命令继续执行可以使用nohup命令,会一直执行。
    
    nohup bin/kafka-server-start.sh config/server.properties 1>/dev/null 2>&1 &
    
    如果想要看开启kafka时的日志,请去掉 1>/dev/null 2>&1 该命令是将日志指向黑洞(类似windows的回收站,区别在于你无法恢复文件)
    
    bin/kafka-server-start.sh config/server.properties &
    
    输入JPS产看状态:(Jps命令自带的OPenJDK不能使用)
    
    Jps 可以使用  netstat -lnp | grep 9092 查看
    
    创建topic:zookeeper后面的参数就是zookeeper配置时的配置,2181为默认端口
    
    replication-factor:设置主题的备份数量(分区的备份数量在配置文件中设置)
    
    partitions:指定分区数数量。
    
    kafka-topics.sh --create --zookeeper master:2181,slave1:2181,slave2:2181 --replication-factor 1 --partitions 1 --topic book
    
    查看所有topic列表
    
    bin/kafka-topics.sh --zookeeper master:2181,slave1:2181,slave2:2181 --list
    
    查看指定topic信息
    
    bin/kafka-topics.sh --zookeeper master:2181,slave1:2181,slave2:2181 --describe --topic book
    
    控制台向topic生产数据
    
    bin/kafka-console-producer.sh --broker-list master:9092 --topic book
    
    控制台消费topic的数据:
    
    --from-beginning:指定从头消费数据。
    
    bin/kafka-console-consumer.sh --zookeeper master:2181 --topic book --from-beginning
    
    停止kafka:
    
    bin/kafka-server-stop.sh
    
    
    输入命令:netstat -lnp | grep 9092或jps
    
    查看是否关闭,如果没用使用 kill -9 pid(就是查询出的pid号)
  • 相关阅读:
    Daily Scrum NO.4
    Daily Scrum NO.3
    Daily Scrum NO.2
    Daily Scrum NO.1
    Beta任务项录入
    M1事后分析报告
    wenbao与概率
    wenbao与组合数
    wenbao与高斯消元
    wenbao与链表
  • 原文地址:https://www.cnblogs.com/wanchen-chen/p/12934103.html
Copyright © 2020-2023  润新知